
ChatNMI & Beyond: Pushing
the 'Easy Button' in
Home-based AI Deployment
- A Comparative Review of
Leading Software Solutions

Konrad Jędrzejczyk, Marek Zmysłowski

whoami
Konrad is an expert in both defensive and offensive
security, having gained experience from prestigious global
institutions such as Credit Suisse and the Royal Bank of
Scotland. After dedicating a decade to Blue Team
operations, he made a transition to the Red Team and has
now been excelling in this role for over 3 years. Konrad is
the creator of the ChatNMI (No Moral Issues) tool for AI and
has been a featured speaker at several conferences,
including DefCamp, BSides and Oh My H@ck.

Marek is Offensive Security Certified Professional (OSCP)
and Offensive Security Certified Expert (OSCE). He brings to
the table 16 years of penetration testing experience,
showcasing expertise in C and C++ programming, reverse
engineering, and network and infrastructure security.
Marek has shared his insights at various conferences, such
as HiTB, PacSec, BlueHat, DefCamp, Confidence, and Oh My
H@ck.

Motivation

Motivation

Privacy
- We want to protect the information
we ask the AI about.

- We want to have honest answers,
not those that are “politically
correct”.

Money
- Sooner or later everything will be paid.

- One cannot control the expense.

Risks
- Service availability.

- Bans imposed by governments or other
entities.

- Changes in usage policy.

- Ethical or responsibility concerns
related to AI.

Privacy

“Forget artificial intelligence – in
the brave new world of big data,
it’s artificial idiocy we should be
looking out for.”

—Tom Chatfield

Privacy

Facebook taking my photo. Me sending internal
emails/projects to ChatGPT for

rewriting and better English.

Privacy

Privacy

Privacy

Privacy
(Political correctness)

Money

Language Models - OpenAI

 /1K tokens

Model Context/Type Input Output Training

GPT-4 8K context $0.03 $0.06 -

 32K context $0.06 $0.12 -

GPT-3.5 Turbo 4K context $0.0015 $0.002 -

 16K context $0.003 $0.004 -

Fine-Tuning babbage-002 $0.0016 $0.0016 $0.0004

 davinci-002 $0.0120 $0.0120 $0.0060

 GPT-3.5 Turbo $0.0120 $0.0160 $0.0080

Money

Embedding Models/1K tokens - OpenAI

Ada v2 $0.0001

Base Models

babbage-002 $0.0004/1K tokens

davinci-002 $0.0020/1K tokens

Image Models

1024x1024 $0.020/image

512x512 $0.018/image

256x256 $0.016/image

Audio Models

Whisper $0.006/minute

Money/Risks

Money/Risks

Risk

Risk

Risk

AI Theory

General
Classification

AI: The capability of a system to execute intelligent functions.

Machine Learning: The capacity not only to perform intelligent tasks but also
to acquire knowledge from experience, improve performance through task
execution, and learn from data.

NLP (Natural Language Processing): Involves both understanding and
generating human language, encompassing the capability to comprehend and
create text or speech.

Deep Learning: A branch of machine learning that emulates the neural
networks in the human brain to facilitate complex pattern recognition and
learning.

Generative AI: A subset of artificial intelligence algorithms that produce fresh
outputs based on their training data. In contrast to conventional AI systems
that identify patterns and make predictions, generative AI generates novel
content, including images, text, audio, and more.

LLM (Large Language Model)

• A generic term that refers to transformer language models (GPT-3,
BLOOM, OPT) that were trained on a large quantity of data. These
models also tend to have a large number of learnable parameters
(e.g. 175 billion for GPT-3).

• A language model trained for causal language modelling takes a
sequence of text tokens as input and returns the probability
distribution for the next token.

• Large, pretrained transformer models trained to predict the next
word (or, more precisely, token) given some input text. Since they
predict one token at a time, to generate new sentences,
autoregressive generation is needed.

https://huggingface.co/docs/transformers/main/llm_tutorial

https://huggingface.co/docs/transformers/main/llm_tutorial

Types of LLMs

Transformer-based - language models, operate by analyzing and
generating text through a blend of self-attention mechanisms,
positional encoding, and multi-layer neural networks.

LSTM (Long Short-Term Memory) - belongs to the category of
recurrent neural networks (RNNs) capable of capturing extended
contextual relationships within textual data.

ELMo (Embeddings from Language Models) - ELMo represents a
sizable language model created by the Allen Institute for AI,
designed to generate contextualized word embeddings.

Types of LLMs

Transformer-based - language models, operate
by analyzing and generating text through a
blend of self-attention mechanisms, positional
encoding, and multi-layer neural networks. At
the heart of the Transformer architecture lies
the self-attention mechanism, which constructs
a weighted representation of the input
sequence, taking into account the
interconnections among various segments of
the text. This functionality empowers the model
to grasp extensive contextual information and
long-range dependencies within the text.

LSTM (Long Short-Term Memory) - belongs to the category of
recurrent neural networks (RNNs) capable of capturing extended
contextual relationships within textual data. LSTM-driven models,
exemplified by ULMFiT (Universal Language Model Fine-tuning), have
found utility in various applications, including text classification,
sentiment analysis, and language modeling.

ELMo (Embeddings from Language Models) - ELMo represents a
sizable language model created by the Allen Institute for AI, designed
to generate contextualized word embeddings. By infusing
context-specific details into the model, ELMo embeddings have been
instrumental in enhancing the efficacy of a range of NLP tasks. While
ELMo is among the well-known variants of large language models, it's
worth noting that the NLP research community continually produces a
plethora of other models and innovations, with fresh models and
techniques consistently emerging.

https://www.simform.com/blog/how-do-llm-work/

https://www.simform.com/blog/how-do-llm-work/

https://github.com/Mooler0410/LLMsPracticalGuide#practical-guide-for-nlp-tasks

Models Evolution

https://github.com/Mooler0410/LLMsPracticalGuide#practical-guide-for-nlp-tasks

https://browse.arxiv.org/pdf/2308.08155.pdf

Bringing to Life

https://medium.com/@bijit211987/the-evolution-of-language-models-pre-training-fine-tuning-and-in-context-learning-b63d4c161e49

https://medium.com/@bijit211987/the-evolution-of-language-models-pre-training-fine-tuning-and-in-context-learning-b63d4c161e49

Bringing to Life

PRE-TRAINING - THE MODEL IS
TRAINED ON A MASSIVE
DATASET CONTAINING A
DIVERSE RANGE OF TEXT

FINE-TUNING - THE MODEL IS
FINE-TUNED ON A SMALLER,

TASK-SPECIFIC DATASET

IN-CONTEXT LEARNING - A LARGE
LANGUAGE MODEL CAN COMPLETE
A TASK BY WITNESSING ONLY A FEW

EXAMPLES, EVEN IF IT WASN’T
INITIALLY TRAINED FOR THAT TASK.

Bringing to Life - Pre-training

During this phase, the model is trained on a massive dataset containing a diverse
range of text from the internet, such as books, articles, and websites. Pre-training
helps the models learn the patterns of language, which include grammar, syntax,
and semantics.An understanding of all these language patterns is achieved through
unsupervised learning. During pre-training, an LLM can be trained in multiple ways.
For instance, OpenAI asks its GPT models to predict subsequent words in a partially
complete sentence. Google, on the other hand, trained BERT using a method called
masked language modeling. In this methodology, the model needs to guess the
randomly blanked words in a sentence.The model regularly updates the weights of
its parameters to minimize the prediction error and that’s how it learns to generate
coherent and contextually relevant text.Pre-training is the most expensive and
time-consuming stage of building an LLM. To put things into perspective, a single
run of GPT-3 is estimated to cost more than $4 million.

Bringing to Life - Fine-tuning

After pre-training, the model is fine-tuned on a smaller, task-specific
dataset. During this phase, the model is trained using supervised learning,
where it is provided with labeled examples of the desired output. Fine-tuning
allows the model to adapt its pre-trained knowledge to the specific
requirements of the target task, such as translation, summarization,
sentiment analysis, and more. This process typically involves the use of
techniques such as gradient descent and backpropagation to update the
model’s parameters and optimize its performance on the task.

Bringing to Life - In-context learning

Researchers at MIT, Stanford, and Google Research are investigating an interesting
phenomenon called in-context learning. This happens when a large language
model can complete a task by witnessing only a few examples, even if it wasn’t
initially trained for that task. For example, if someone feeds the model several
sentences with positive or negative meanings, the model can accurately determine
the sentiment of a new sentence. Normally, a machine-learning model like GPT-3
would need to be retrained with new data to perform a new task. But in in-context
learning, the model’s parameters are not updated, which makes it seem like the
model has learned something new without actually being trained for it. “With a
better understanding of in-context learning, researchers could enable models to
complete new tasks without the need for costly retraining,” says Ekin Akyürek, the
lead author of the paper exploring this recent phenomenon.

What are Transformers?

Transformers are a type of neural network
architecture that allows LLMs to process sequential
data, such as text, parallelly by considering the
context and dependencies between words or
tokens.

Unlike traditional recurrent neural networks
(RNNs) that process sequential data step-by-step,
Transformers leverage a mechanism called
self-attention to capture the dependencies
between different positions in the input sequence.

What are Transformers?

https://huggingface.co/docs/transformers/main/llm_tutorial

https://huggingface.co/docs/transformers/main/llm_tutorial

What are Transformers?

Attention Mask, Cashing Layers

https://arxiv.org/abs/2309.17453

https://arxiv.org/abs/2309.17453

Run LLM at Home - BitTorrent-style

https://github.com/bigscience-workshop/petals#benchmarks
https://arxiv.org/pdf/2209.01188.pdf

https://github.com/bigscience-workshop/petals#benchmarks
https://arxiv.org/pdf/2209.01188.pdf

Multi-Agent Conversation

https://browse.arxiv.org/pdf/2308.08155.pdf

https://browse.arxiv.org/pdf/2308.08155.pdf

Deliberate Problem Solving

https://arxiv.org/pdf/2305.10601.pdf

https://arxiv.org/pdf/2305.10601.pdf

Deliberate Search

What are AI
Hallucinations?

AI hallucinations refer to instances where
artificial intelligence systems generate content
that is not based on real data or factual
information, but instead produces fabricated
or nonsensical content. These hallucinations
can occur in various AI models, including
text-based models like GPT-3 or image-based
models like deep convolutional neural
networks.

Causes of AI
Hallucinations

• Data Limitations: Inaccurate or lacking ground truth data.

• Overfitting: Overemphasis on training data anomalies.

• Data Bias: Learning and amplifying real-world biases.

• Lack of Context: Generating responses without sufficient
information.

• Misleading Prompts: Ambiguous or deceptive input.

• Generative Nature: Probabilistic output variations.

• Lack of External Verification: No access to fact-checking.

• Model Complexity: Larger models prone to hallucinations.

What are AI
Hallucinations?

What are AI Hallucinations?
10 REM Sierpinski Triangle for C64
20 POKE 53280,0:POKE 53281,0 : REM Set border and background to
black
30 GRAPHIC 1,1 : REM High-res mode, clear bitmap
40 FOR I=0 TO 319
50 FOR J=0 TO 199
60 IF FN SIERP(I,J) THEN PLOT I,J,1
70 NEXT J
80 NEXT I
90 END
100 REM Sierpinski Function
110 FN SIERP(X,Y)
120 WHILE X>0 OR Y>0
130 IF X AND 1 AND Y AND 1 THEN RETURN 0
140 X=X/2:Y=Y/2
150 WEND
160 RETURN 1

What are AI Hallucinations?
10 REM Sierpinski Triangle for C64
20 POKE 53280,0:POKE 53281,0 : REM Set border and background to
black
30 GRAPHIC 1,1 : REM High-res mode, clear bitmap
40 FOR I=0 TO 319
50 FOR J=0 TO 199
60 IF FN SIERP(I,J) THEN PLOT I,J,1
70 NEXT J
80 NEXT I
90 END
100 REM Sierpinski Function
110 FN SIERP(X,Y)
120 WHILE X>0 OR Y>0
130 IF X AND 1 AND Y AND 1 THEN RETURN 0
140 X=X/2:Y=Y/2
150 WEND
160 RETURN 1

In BASIC 2.0, it's not present. However, it can be
found in the stock ROM of BASIC 3.5, BASIC 3.6,

BASIC 7, and BASIC 10

Where? “SIERP”??? WHAT?

It's just wrong. Using RETURN without a preceding GOSUB is
bad enough, but then to reference a line or label that

doesn't even exist? That's another level.

Not included in the stock ROMs of
Commodore BASIC

How to Prevent AI
Hallucinations

• Implement active mitigation strategies (e.g., temperature
adjustments, setting a minimum response length).

• Use multi-shot prompting with AI or human supervision.

• Adopt a multi-agent solution equipped with memory and tools.

• Conduct continuous monitoring and evaluation of the model to
identify and correct anomalies.

• Train model using more diverse and representative datasets.

• Implement response dampening techniques that reduce the
risk of generating undesired content.

Hardware

Inference Using CPU?

Model Architecture and Objective

● Modified from Megatron-LM GPT2 (see paper, BLOOM Megatron code):
● Decoder-only architecture
● Layer normalization applied to word embeddings layer

(StableEmbedding)
● ALiBI positional encodings (see paper), with GeLU activation functions
● 176,247,271,424 parameters:

○ 3,596,615,680 embedding parameters
○ 70 layers, 112 attention heads
○ Hidden layers are 14336-dimensional
○ Sequence length of 2048 tokens used

… 45 minutes per token on i5 124000 with 128GB or RAM…

https://huggingface.co/bigscience/bloom#model-architecture-and-objective

https://huggingface.co/bigscience/bloom#model-architecture-and-objective

Why vRAM and Why Amount is Critical
Bandwidth!!! - 1TB/s for RTX4090

Why vRAM and Why Amount is Critical… or is it?

AI Model
Testing Rig –
From
Expensive to
Cheap

AI Model Testing Rig; Option 0 for 2023 (Expensive&Wrong)

AI Model Testing Rig; Option 1 for 2023 (Cheaper & Better)

AI Model Testing Rig; Option 2 for 2023
(Much Cheaper)

• Workstation HP Z620
• 128GB ECC DDR3 RAM
• Tesla P40

AI Model Testing Rig - Summary

• Option 0: Ryzen 5950x + RTX 4090 + 128GB RAM

• Least cost-effective option

• AMD does not efficiently support Python libraries related to AI

• Lack of a second graphics card eliminates the possibility of running support models on a second physical
device (instructor, translation models, etc.)

• Option 1: (2x RTX, with at least one being a 3090 (24GB vRAM)) + Intel I5 12400 + 128GB RAM

• Definitely the best option;

• Intel provides better support for AI-related libraries

• Thanks to two graphics cards, it allows for managing the load of CUDA-utilizing models between the
cards, facilitating efficient multitasking and resource allocation.

• This configuration is particularly well-suited for environments where continuous development and testing
of AI models are required, providing the necessary horsepower for real-time data processing and AI
model optimization.

• Option 2: HP Z620 Workstation + Tesla P40 (24 GB vRAM) + 128GB RAM (Z820 was also tested)

• Most affordable (around $1000)

• Necessity to install a water block on the card

• Despite extensive experience and multiple attempts at uploading various BIOS versions, HP workstations
will not pass the POST if more than one Tesla-type card is installed in the system. Both motherboards can
accept multiple cards but only one Tesla at a time.

• Low performance from both the processors of that generation and the Tesla, which is on par with GTX
1080Ti

Software

Huggingface
(https://huggingface.co/)

The Hugging Face Hub is a platform with
over 120k models, 20k datasets, and 50k
demo apps (Spaces), all open source and
publicly available, in an online platform
where people can easily collaborate and
build ML together. The Hub works as a
central place where anyone can explore,
experiment, collaborate, and build
technology with Machine Learning.

https://huggingface.co/

Models

The Hugging Face Hub hosts many models
for a variety of machine learning tasks.
Models are stored in repositories, so they
benefit from all the features possessed by
every repo on the Hugging Face Hub.
Additionally, model repos have attributes
that make exploring and using models as
easy as possible.

Model

Models

Models

Models

● The publisher

● Model name

● Number of parameters (b means billion)

● Model type

Model Types

•GGML - (GPT-Generated Model Language) GGML files are for CPU + GPU
inference using llama.cpp and libraries and UIs which support this format
(deprecated)

•GGUF - It is a new format introduced by the llama.cpp team on August 21st
2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
GGUF offers numerous advantages over GGML, such as better tokenization, and
support for special tokens. It is also supports metadata, and is designed to be
extensible.

•GPTQ - It is a clever quantization algorithm that lightly re-optimizes the weights
during quantization so that the accuracy loss is compensated relative to a
round-to-nearest quantization.

•HF - Hugging Face Transformers format. The Hugging Face transformers library
provides the Trainer utility and Auto Model classes that enable loading and
fine-tuning Transformers models.

Retrieval

Retrieval-augmented generation (RAG) is an AI framework for improving the
quality of LLM-generated responses by grounding the model on external
sources of knowledge to supplement the LLM’s internal representation of
information. Implementing RAG in an LLM-based question answering system
has two main benefits: It ensures that the model has access to the most
current, reliable facts, and that users have access to the model’s sources,
ensuring that its claims can be checked for accuracy and ultimately trusted.

Workflow with Retrieval

https://python.langchain.com/docs/use_cases/question_answering/

https://python.langchain.com/docs/use_cases/question_answering/

Simple Workflow

There are few components
needed for a simple workflow Tokenizer

Model

Embeddings

Pipeline

Retrieval

Tokenizer
A tokenizer is in charge of preparing the inputs for a model. The library contains tokenizers
for all the models. Most of the tokenizers are available in two flavors: a full python
implementation and a “Fast” implementation based on the Rust library 🤗 Tokenizers.

The base classes PreTrainedTokenizer and PreTrainedTokenizerFast implement the common
methods for encoding string inputs in model inputs and instantiating/saving python and
“Fast” tokenizers either from a local file or directory or from a pretrained tokenizer
provided by the library.

PreTrainedTokenizer and PreTrainedTokenizerFast thus implement the main methods for
using all the tokenizers:

• Tokenizing (splitting strings in sub-word token strings), converting tokens strings to
ids and back, and encoding/decoding (i.e., tokenizing and converting to integers).

• Adding new tokens to the vocabulary in a way that is independent of the underlying
structure (BPE, SentencePiece…).

• Managing special tokens (like mask, beginning-of-sentence, etc.): adding them,
assigning them to attributes in the tokenizer for easy access and making sure they
are not split during tokenization.

Model
The base classes PreTrainedModel, TFPreTrainedModel, and
FlaxPreTrainedModel implement the common methods for loading/saving a
model either from a local file or directory, or from a pretrained model
configuration provided by the library.

Pipeline
The pipelines are a great and easy way to use models for
inference. These pipelines are objects that abstract most
of the complex code from the library, offering a simple API
dedicated to several tasks, including Named Entity
Recognition, Masked Language Modeling, Sentiment
Analysis, Feature Extraction and Question Answering. See
the task summary for examples of use.

There are two categories of pipeline abstractions to be
aware about:

• The pipeline() which is the most powerful object
encapsulating all other pipelines.

• Task-specific pipelines are available for audio,
computer vision, natural language processing, and
multimodal tasks.

Embeddings

hkunlp/instructor-xl,
hkunlp/instructor-large - an
instruction-finetuned text embedding
model that can generate text
embeddings tailored to any task (e.g.,
classification, retrieval, clustering,
text evaluation, etc.) and domains
(e.g., science, finance, etc.) by simply
providing the task instruction,
without any finetuning.

ChatNMI and ChatNMI v2 https://github.com/chatnmi?tab=repositories

https://github.com/chatnmi?tab=repositories

Local AI Model
Deployment:
ChatNMI

https://github.com/chatnmi/chatnmi

• SimpleQuery - testing AI models
• SimpleQueryFile - talking with your

data
• SimpleOpenAI - talking with your data

using OpenAI

https://github.com/chatnmi/chatnmi_v2

• SimpleQueryFile - talking with your
data

https://github.com/chatnmi/chatnmi
https://github.com/chatnmi/chatnmi_v2

ChatNMI v2
• Functionality to use modern models

• No need to use the downloader first

• Using latest version ChromaDB

• Simpler build but the same functionality

simple_workflow.py

Loading PDF File

Building Database

Loading Model

Creating Query Chain

Running Query

Display Answer and Sources

Display Answer and Sources

> Query:
Describe the story of Pierre

> Answer:
 In "War and Peace," Tolstoy tells the story of Pierre Bezukhov, a
wealthy Russian aristocrat who struggles to find meaning in his life.
After inheriting a large fortune, Pierre becomes disillusioned with his
privileged lifestyle and embarks on a spiritual journey to understand the
true purpose of existence. Along the way, he encounters various
characters and experiences different events that shape his perspective
on life. For example, during his imprisonment in France, Pierre meets an
Italian soldier named Fabrizio who inspires him to reevaluate his
priorities and values. Despite facing numerous challenges and setbacks
throughout the novel, including financial difficulties, romantic
heartbreak, and war, Pierre ultimately finds peace and fulfillment
through self-reflection and compassion towards others.

> Query:
Describe the story of Pierre

> Answer:
 In War and Peace, Pierre is a Frenchman who tells his friend Ramballe
the story of his life. Pierre was born into a wealthy family and became a
captain of dragoons in Bonaparte's army. Despite this, he remained in
Moscow with Bonaparte during the Napoleonic Wars. Throughout his
story, Pierre emphasizes the importance of his lineage, as his name is
one of the most ancient in France. He also talks about his love for a
comet and how it is connected to his heart.

> Query:
Describe the story of Pierre

> Answer:
 The story of Pierre is complex and involves many different characters and events
throughout War and Peace. However, we can provide a brief summary of some key
points.

Pierre Bezukhov is a wealthy landowner who lives in St Petersburg during the early
19th century. He is deeply troubled by the conflict between his spiritual beliefs and
the demands of society, and struggles to find meaning in his life.

Throughout the novel, Pierre experiences a series of transformative moments that
challenge his understanding of the world. These include witnessing the death of his
father, being captured by the French during the invasion of Russia, and falling in
love with Natasha Rostova.

Despite his initial difficulties, Pierre ultimately finds happiness and purpose
through his relationships with others. He becomes close friends with Andrei
Bolkonsky, helps to raise Natasha's son after her marriage breaks down, and
eventually marries Helene Kuragin despite knowing she is unfaithful to him.

Overall, the story of Pierre is a reflection on the human search for meaning and
connection in a chaotic and uncertain world.

Local AI Model Deployment: OpenLLM
https://github.com/bentoml/OpenLLM

https://github.com/bentoml/OpenLLM

Local AI Model
Deployment: Text
generation web UI

https://github.com/oobabooga/text-generation-webui

https://github.com/oobabooga/text-generation-webui

Local AI Model Deployment: LM Studio
https://lmstudio.ai/

https://lmstudio.ai/

Local AI Model
Deployment: LM Studio
koboldcpp

https://github.com/LostRuins/koboldcpp

https://github.com/LostRuins/koboldcpp

Local AI Model Deployment: LM Studio exllama

https://github.com/turboderp/exllama

https://github.com/turboderp/exllama

Local AI Model
Deployment:
TavernAI

https://github.com/TavernAI/TavernAI with:

https://huggingface.co/TheBloke/Pygmalion-13B-SuperHOT-8K-GPTQ
https://huggingface.co/TehVenom/Metharme-13b-Merged
https://huggingface.co/Blackroot/Nous-Hermes-Llama2-13b-Storywrit
er

https://github.com/TavernAI/TavernAI

Q&A

“AI Won’t Replace Humans —

But Humans With AI Will Replace
Humans Without AI”

Karim Lakhani, co-chair of the
Digital Data Design Institute at
Harvard and professor at Harvard
Business School.

+

Use Case: Because Genesis 1:18

+ LORA
SDXL+

stable-diffusion-webui
+

kohya_ss

sd-xl-refiner
+

Use Case: Because Genesis 1:18

Use Case: Because Genesis 1:18

•https://chat.openai.com/g/g-ZayCuRqtd-
commodore-c64-expert

•https://tinyurl.com/47snn95

https://chat.openai.com/g/g-ZayCuRqtd-commodore-c64-expert
https://chat.openai.com/g/g-ZayCuRqtd-commodore-c64-expert
https://tinyurl.com/47snn95

https://www.linkedin.com/in/marekzmyslowski/
https://www.linkedin.com/in/konrad-j%C4%99drzejczyk-7092b93b/

https://twitter.com/marekzmyslowski
https://twitter.com/Tech_priests

marekzmyslowski@poczta.onet.pl
konrad.jedrzejczyk@interia.pl

https://github.com/chatnmi

https://www.linkedin.com/in/marekzmyslowski/
https://www.linkedin.com/in/konrad-j%C4%99drzejczyk-7092b93b/
https://twitter.com/marekzmyslowski
https://twitter.com/Tech_priests
mailto:marekzmyslowski@poczta.onet.pl
mailto:konrad.jedrzejczyk@interia.pl
https://github.com/chatnmi

