
Getting startedwith
vulnerabilitydiscoveryusing
MachineLearning

by

G. Grieco

Def.Camp 2015

Objectives

2/43

1. Theory
1.1 Understand how Machine Learning is used ...
1.2 and how you can apply i it for vulnerability detection.

2. Practice:
2.1 Prediction and test case visualization with VDiscover

Motivation and previous work 3/43

Motivationandpreviouswork

Vulnerabilities in software 101

Motivation and previous work 4/43

i n t main (i n t argc , char ∗ a rgv []) {
char u s e r [1 2 8] ;
char cmd [1 2 8] ;
char b u f f e r [1 0 2 4] ;

s t r c p y (cmd , " . / show_users ") ;
s t r c p y (use r , a rgv [1]) ;

FILE∗ s t ream = popen (cmd , " r ") ;
f r e a d (bu f f e r , 1 , 1023 , s t ream) ;
b u f f e r [1 0 23] = NULL ;

i f (s t r s t r (b u f f e r , u s e r)) {
p r i n t f (" u s e r \"%s \" found \n" , u s e r) ;

}

p c l o s e (s t ream) ;
r e t u r n 0 ;

}

Normally:
prog “root” → user "root" found

Unfortunately:
prog “aaa...”→ sh: 1: aaa...: not found

Vulnerabilities in software 101

Motivation and previous work 4/43

i n t main (i n t argc , char ∗ a rgv []) {
char u s e r [1 2 8] ;
char cmd [1 2 8] ;
char b u f f e r [1 0 2 4] ;

s t r c p y (cmd , " . / show_users ") ;
s t r c p y (use r , a rgv [1]) ;

FILE∗ s t ream = popen (cmd , " r ") ;
f r e a d (bu f f e r , 1 , 1023 , s t ream) ;
b u f f e r [1 0 23] = NULL ;

i f (s t r s t r (b u f f e r , u s e r)) {
p r i n t f (" u s e r \"%s \" found \n" , u s e r) ;

}

p c l o s e (s t ream) ;
r e t u r n 0 ;

}

Normally:
prog “root” → user "root" found

Unfortunately:
prog “aaa...”→ sh: 1: aaa...: not found

Vulnerabilities in software 101

Motivation and previous work 4/43

i n t main (i n t argc , char ∗ a rgv []) {
char u s e r [1 2 8] ;
char cmd [1 2 8] ;
char b u f f e r [1 0 2 4] ;

s t r c p y (cmd , " . / show_users ") ;
s t r c p y (use r , a rgv [1]) ;

FILE∗ s t ream = popen (cmd , " r ") ;
f r e a d (bu f f e r , 1 , 1023 , s t ream) ;
b u f f e r [1 0 23] = NULL ;

i f (s t r s t r (b u f f e r , u s e r)) {
p r i n t f (" u s e r \"%s \" found \n" , u s e r) ;

}

p c l o s e (s t ream) ;
r e t u r n 0 ;

}

Normally:
prog “root” → user "root" found

Unfortunately:
prog “aaa...”→ sh: 1: aaa...: not found

Vulnerabilities in software 102

Motivation and previous work 5/43

1. Static Program Analysis: to scan code to detect potential vulnerabilities

Imprecise, since we don’t know how the code will execute.

2. Dynamic Program Analysis: to check a program behavior to detect
vulnerabilities

Incomplete, since we can’t examine all the possible executions.

3. Testing: to fuzz a normal input ("user" → {"uer","uuuser", ...})

Not so effective: it could require many mutations to uncover
interesting bugs.

The problem:

For every program and vulnerability to discovery, these approaches
are quite costly in terms of computation power.
We have a large number programs and bugs reports to analyze
(e.g, in Debian we have more than 30k programs and 80k bug
reports)

Vulnerabilities in software 102

Motivation and previous work 5/43

1. Static Program Analysis: to scan code to detect potential vulnerabilities

Imprecise, since we don’t know how the code will execute.

2. Dynamic Program Analysis: to check a program behavior to detect
vulnerabilities

Incomplete, since we can’t examine all the possible executions.

3. Testing: to fuzz a normal input ("user" → {"uer","uuuser", ...})

Not so effective: it could require many mutations to uncover
interesting bugs.

The problem:

For every program and vulnerability to discovery, these approaches
are quite costly in terms of computation power.
We have a large number programs and bugs reports to analyze
(e.g, in Debian we have more than 30k programs and 80k bug
reports)

Introducing traces

Motivation and previous work 6/43

Sequences of program events:

Calls to standard functions and its arguments (strcpy, memcpy,
malloc, free, ..)
Final state (exit, crash, abort or timeout)

prog "root"

1. strcpy
2. strcpy
3. popen
4. fread
5. strstr
6. printf
7. pclose
8. exit

prog "roAAAAot"

1. strcpy
2. strcpy
3. popen
4. fread
5. strstr
6. pclose
7. exit

prog

1. strcpy
2. strcpy..
3. crash

Whatwewant?

Motivation and previous work 7/43

A technique to automatize or assist vulnerability
discovery from traces extracted directly from binaries.

Key ideas:

We have a large number of programs/test cases to
analyze.
We want to learn patterns in a small sample of analyzed
programs/test cases.
We would like to predict which new programs/test cases
are more likely to uncover vulnerabilities.

Whatwewant?

Motivation and previous work 7/43

A technique to automatize or assist vulnerability
discovery from traces extracted directly from binaries.

Key ideas:

We have a large number of programs/test cases to
analyze.
We want to learn patterns in a small sample of analyzed
programs/test cases.
We would like to predict which new programs/test cases
are more likely to uncover vulnerabilities.

PreviousWork

Motivation and previous work 8/43

Vulnerability Extrapolation: Assisted Discovery of
Vulnerabilities Using Machine Learning [5]

Previous Results

Motivation and previous work 9/43

The plan

Motivation and previous work 10/43

In general:

1. Data collection
2. Embedding in a n-dimensional space
3. Model training/inference
4. Testing the trained model with new data

Toward large-scale vulnerability discovery using Machine Learning 11/43

Toward large-scale
vulnerabilitydiscovery
usingMachineLearning

Overview: Training

Toward large-scale vulnerability discovery using Machine Learning 12/43

Vulnerability
Detection
Procedure

testcase output

dataset

✓|✗

Overview: Training

Toward large-scale vulnerability discovery using Machine Learning 12/43

Vulnerability
Detection
Procedure

testcase output

dataset

✓|✗

VDiscover
features train target

Overview: Training

Toward large-scale vulnerability discovery using Machine Learning 12/43

Vulnerability
Detection
Procedure

new
testcase output ✓|✗

VDiscover
features prediction

KeyPrinciples of VDiscover

Toward large-scale vulnerability discovery using Machine Learning 13/43

1. No source-code required: Our features are extracted
using static and dynamic analysis for binaries programs,
allowing our technique to be used in proprietary operating
systems.

2. Automation: No human intervention is need to select
features to predict, we focused only on feature sets that
can be extracted and selected automatically, given a large
enough dataset.

3. Scalability: Since we want to focus on scalable
techniques, we only use lightweight static and dynamic
analysis. Costly operations like instruction per instruction
reasoning are avoided by design.

Data collection

Toward large-scale vulnerability discovery using Machine Learning 14/43

Initial setup

Toward large-scale vulnerability discovery using Machine Learning 15/43

1. Download and extract the Mayhem bugs [3] from the
Debian Bug Tracker [2].

A total of 1039 bugs in 496 packages.
Every bug is packed with a crash report and the required
inputs to reproduce it.

2. Prepare a virtual machine (Vagrant box [4]) and install
the required packages.

Let’s take look to a small test case..

Reproducible test cases

Toward large-scale vulnerability discovery using Machine Learning 16/43

xa is a small cross-assembler for the 65xx series of 8-bit
processors (i.e. Commodore 64). A test case is structured
like this:

path.txt /usr/bin/xa
crash

argv_1.symb \bo@e\0
argv_2.symb @o
argv_3.symb -o

This bug is *not* fixed

Toward large-scale vulnerability discovery using Machine Learning 17/43

$ gdb --args env -i /usr/bin/xa ’\bo@e\0’ ’@o’ ’-o’
...
Program received signal SIGSEGV, Segmentation fault.
(gdb) x/i $eip => 0x8049788: movzbl (%ecx),%eax
(gdb) info registers
eax 0x0 0
ecx 0x0 0

...

Question:
Should we spend our resources trying to fuzz this test case?

This vulnerability is not fixed!

Toward large-scale vulnerability discovery using Machine Learning 18/43

$ gdb --args env -i /usr/bin/xa ’\bo@e\0’ ’@o’ ’AAAA...AAAA-o’

Copyright (C) 1989-2009 Andre Fachat, Jolse Maginnis, David
Weinehall
o@e:line 1: 1000:Syntax error
and Cameron Kaiser.
o@e:line 2: 1000:Syntax error
Couldn’t open source file ’@o’!
o@e:line 3: 1000:Syntax error
Couldn’t open source file ’o@’!
*** buffer overflow detected ***: /usr/bin/xa terminated

...

This vulnerability is not fixed!

Toward large-scale vulnerability discovery using Machine Learning 18/43

$ gdb --args env -i /usr/bin/xa ’\bo@e\0’ ’@o’ ’AAAA...AAAA-o’

Copyright (C) 1989-2009 Andre Fachat, Jolse Maginnis, David
Weinehall
o@e:line 1: 1000:Syntax error
and Cameron Kaiser.
o@e:line 2: 1000:Syntax error
Couldn’t open source file ’@o’!
o@e:line 3: 1000:Syntax error
Couldn’t open source file ’o@’!
*** buffer overflow detected ***: /usr/bin/xa terminated

...

Apredictive approach

Toward large-scale vulnerability discovery using Machine Learning 19/43

We want to predict if our fuzzer will find at least one
interesting memory vulnerability (e.g, stack corruption).
These cases will be flagged for further analysis.

To train, we need to collect useful data from every test
case available. This data are our features.

Question:
Which features we can use to train? (yes, traces, but how?)

A small fragment of the xa assembly

Toward large-scale vulnerability discovery using Machine Learning 20/43

1 c a l l ge tenv
2 t e s t %eax ,%eax
3 j e @11
4 l e a −0x100c(%ebp) ,%ebx
5 mov %eax , 0 x4(%esp)
6 mov %ebx ,(% esp)
7 c a l l s t r c p y
8 movl $0x123 , 0 x4(%esp)
9 mov %ebx ,(% esp)
10 c a l l s t r t o k
11 . . .
12 r e t

Standard C library functions are one of the basic blocks in low
level programing!

A small fragment of the xa assembly

Toward large-scale vulnerability discovery using Machine Learning 20/43

1 c a l l ge tenv
2 t e s t %eax ,%eax
3 j e @11
4 l e a −0x100c(%ebp) ,%ebx
5 mov %eax , 0 x4(%esp)
6 mov %ebx ,(% esp)
7 c a l l s t r c p y
8 movl $0x123 , 0 x4(%esp)
9 mov %ebx ,(% esp)
10 c a l l s t r t o k
11 . . .
12 r e t

Standard C library functions are one of the basic blocks in low
level programing!

Tracing xa

Toward large-scale vulnerability discovery using Machine Learning 21/43

ltrace VDiscover

getenv(’XAINPUT’)
strcpy(0xbfffc0fc, input)

strtok(’input’, ’,’)

getenv(GPtr32)
strcpy(SPtr32,HPtr32)
strtok(HPtr32,GPtr32)

Preprocessing values

Toward large-scale vulnerability discovery using Machine Learning 22/43

Assertion:
Machine Learning algorithms cannot deals with values like string,
pointers, integers, that why replace them with meaningful labels.

n-space embedding

Toward large-scale vulnerability discovery using Machine Learning 23/43

.. from traces to vectors ..

Toward large-scale vulnerability discovery using Machine Learning 24/43

Several options are available, we tried two:
Word2vec [1]

Bag of words

Once we convert every trace, we have everything ready to start
doing some learning!

Model training/inference

Toward large-scale vulnerability discovery using Machine Learning 25/43

Training andTesting

Toward large-scale vulnerability discovery using Machine Learning 26/43

Formally,

Toward large-scale vulnerability discovery using Machine Learning 27/43

1. Split the dataset into K equal partitions (or "folds").
2. Use fold 1 as the testing set and the union of the other

folds as the training set.
3. Calculate testing accuracy.
4. Repeat steps 2 and 3 K times, using a different fold as the

testing set each time.
5. Use the average testing accuracy as the estimate of

out-of-sample accuracy.

ALERT!
You should never use the same data to train and evaluate in
Machine Learning.

The usual suspects

Toward large-scale vulnerability discovery using Machine Learning 28/43

Logistic regression
Random forests
Multi-layer Neural Networks

Every classifier will be trained with different parameters and we will
report the best test accuracy.

Testing on newdata

Toward large-scale vulnerability discovery using Machine Learning 29/43

Prediction accuracy

Toward large-scale vulnerability discovery using Machine Learning 30/43

Flagged Not Flagged
Flagged 55% 17%

Not Flagged 45% 83%

These results are obtained using Random Forest (scikit-learn) in
1-3 grams dataset

Prediction accuracy

Toward large-scale vulnerability discovery using Machine Learning 30/43

Giveme a break!

Toward large-scale vulnerability discovery using Machine Learning 31/43

Workshop Time! 32/43

WorkshopTime!

InstallingVDiscover

Workshop Time! 33/43

Make sure you install a recent version, not the ancient version from
the Ubuntu repositories (you can download packages here)
1. Setup a VM:

vag ran t i n i t ubuntu/ t r u s t y 3 2
vag ran t up −−p r o v i d e r v i r t u a l b o x
vag ran t s sh −− −X

2. Take some minutes to install basic stuff (git,
python-setuptools, python-sklearn ..)
g i t c l o n e h t t p s : // g i t hub . com/CIFASIS/ vd i s c o v e r−workshop
g i t c l o n e h t t p s : // g i t hub . com/CIFASIS/VDiscove r
cd VDiscove r
. / s e tup . py i n s t a l l −−u s e r

(don’t forget to append “PATH=$PATH:~/.local/bin” to your .bashrc)

https://www.vagrantup.com/downloads.html

VDiscover

Workshop Time! 34/43

Open source (GPL3) and available here:
http://www.vdiscover.org/
Written in Python 2:

python-ptrace
scikit-learn (and dependencies)

Composed by:
tcreator: test case creation
fextractor: feature extraction
vpredictor: trainer and predictor
vd: a high level script to save time extracting data

Trace should be collected in x86 (because i’m lazy!)

http://www.vdiscover.org/

Setting up a test case

Workshop Time! 35/43

$ printf ’Hello!’ > test.html

$ tcreator --name test-html --cmd "/usr/bin/html2text

file:$(pwd)/test.html" out

Workshop Time!
Experiment adding and removing arguments and files to check how
test cases are created.

Setting up a test case

Workshop Time! 35/43

$ printf ’Hello!’ > test.html

$ tcreator --name test-html --cmd "/usr/bin/html2text

file:$(pwd)/test.html" out

Workshop Time!
Experiment adding and removing arguments and files to check how
test cases are created.

Collectingmyfirst trace (1)

Workshop Time! 36/43

$ fextractor --dynamic out/test-html/ > trace1.csv
$ cat trace1.csv

out/test-html/ strcmp:0=GxPtr32 strcmp:1=GxPtr32 strcmp:0=GxPtr32

strcmp:1=GxPtr32 strcmp:0=GxPtr32 strcmp:1=GxPtr32

strcmp:0=GxPtr32 strcmp:1=GxPtr32 strcmp:0=GxPtr32

strcmp:1=GxPtr32 strcmp:0=GxPtr32 strcmp:1=GxPtr32

strcmp:0=GxPtr32 strcmp:1=GxPtr32 ..

Workshop Time!
Take a few minutes to extract traces from other programs and how
to include/exclude events from different modules
(–inc-mods/–ign-mods)

Collectingmyfirst trace (1)

Workshop Time! 36/43

$ fextractor --dynamic out/test-html/ > trace1.csv
$ cat trace1.csv

out/test-html/ strcmp:0=GxPtr32 strcmp:1=GxPtr32 strcmp:0=GxPtr32

strcmp:1=GxPtr32 strcmp:0=GxPtr32 strcmp:1=GxPtr32

strcmp:0=GxPtr32 strcmp:1=GxPtr32 strcmp:0=GxPtr32

strcmp:1=GxPtr32 strcmp:0=GxPtr32 strcmp:1=GxPtr32

strcmp:0=GxPtr32 strcmp:1=GxPtr32 ..

Workshop Time!
Take a few minutes to extract traces from other programs and how
to include/exclude events from different modules
(–inc-mods/–ign-mods)

Collectingmyfirst trace (2)

Workshop Time! 37/43

$ printf ’<baaa>Bye!’ > test.html
$ fextractor --dynamic out/test-html/ > trace2.csv
$ cat trace2.csv

out/test-html/ strcmp:0=GxPtr32 strcmp:1=GxPtr32 strcmp:0=GxPtr32

strcmp:1=GxPtr32 strcmp:0=GxPtr32 strcmp:1=GxPtr32

strcmp:0=GxPtr32 strcmp:1=GxPtr32 strcmp:0=GxPtr32

strcmp:1=GxPtr32 strcmp:0=GxPtr32 strcmp:1=GxPtr32

strcmp:0=GxPtr32 strcmp:1=GxPtr32 ..

It looks exactly the same!!
.. but in fact, they are not. Later, we are going to show how to
easily visualize traces..

ZZUFdataset (1)

Workshop Time! 38/43

1. Collect binary programs from /usr/bin or /bin. For instance:
“/usr/bin/identify”

2. Fetch different seed files from the fuzzing project
(https://files.fuzzing-project.org/). For instance: “audio.wav”

3. Extract and select random command line arguments (manfuzzer). For
instance: “-verbose -gamma 42”

4. Collect the dataset:

4.1 Use zzuf to fuzz command line using every possible seed file.
4.2 Detect crashes, aborts, timeouts and very large allocations.
4.3 Record traces using VDiscover.

5. Train and test using VDiscover.

A detailed explanation of this dataset is available here:
http://www.vdiscover.org/OS-fuzzing.html

http://www.vdiscover.org/OS-fuzzing.html

ZZUFdataset (2)

Workshop Time! 39/43

cmds.csv.gz: 64k command-line to fuzz
traces.csv.gz: sampled and balanced traces ready to be
trained and tested
zzuf.csv.gz: output from zzuf after fuzzing

To split the data in train and test sets:

$./split.py dataset/traces.csv.gz 42

Training and testing a bug predictor

Workshop Time! 40/43

Training:
$ vpredictor --dynamic --train-rf data/42/train.csv --out-file

model.pklz

Testing:
$ vpredictor --test --dynamic --model model.pklz data/42/test.csv
--out-file predicted.out
...
Accuracy per class: 0.7 0.85

Average accuracy: 0.77

Visualizing test cases

Workshop Time! 41/43

Collecting data:
$ tar -xf files.fuzzing-project.org.tar.gz

$ vd -i seeds/files.fuzzing-project.org "/usr/bin/file @@" -o

file-traces.csv
Clustering using bag of words (bow) and display:
$ vpredictor --cluster-bow --dynamic file-traces.csv

Question

How test cases are clustered?

Extended exercises

Workshop Time! 42/43

1. Add a command line flag to VDiscover to suppress the hooking of
certain event.

2. Visualize some new test cases with pnginfo:
2.1 Collect traces and plot test cases using the png test suite

(PngSuite-2013jan13.tgz) with pnginfo
2.2 Observe the results and explain how the test cases are

clustered.
3. Limitations in VDiscover implementation:

3.1 Identify issues in the trace collection using the seed from the
fuzzing-project with html2text.

3.2 Suggest a possible solution.
4. Discuss:

4.1 How the visualization can be used in vulnerability discovery?

References

Workshop Time! 43/43

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
CoRR, abs/1301.3781, 2013.

Mayhem Team.
List of mayhem bugs.
https://bugs.debian.org/cgi-bin/pkgreport.cgi?submitter=alexandre%40cmu.edu,
2013.
Mayhem Team.
Reporting 1.2K crashes.
https://lists.debian.org/debian-devel/2013/06/msg00720.html, 2013.

Vagrant.
Vagrant: Development environments made easy.
http://www.vagrantup.com/, 2014.

Fabian Yamaguchi, Felix Lindner, and Konrad Rieck.
Vulnerability extrapolation: Assisted discovery of vulnerabilities using machine learning.
In Proceedings of the 5th USENIX Conference on Offensive Technologies, WOOT’11. USENIX
Association, 2011.

https://bugs.debian.org/cgi-bin/pkgreport.cgi?submitter=alexandre%40cmu.edu
https://lists.debian.org/debian-devel/2013/06/msg00720.html
http://www.vagrantup.com/

	Motivation and previous work
	Toward large-scale vulnerability discovery using Machine Learning
	Data collection
	Embedding in a n-dimensional space
	Model training/inference
	Testing on new data

	Workshop Time!

