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Agenda 

Confidential 

Virlock as a common malware 

• Reversing stages 

• Metamorphic algorithm  

Virlock as a file infector  

• Detection 

• Extracting the host file 

Virlock as a polymorphic malware 

• On-demand polymorphic algorithm 

Virlock as a ransomware 

• Visible signs  

• Unlocking 



Virlock 
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What Is A File Infector? 

Confidential 

Attaches the malware code into the host file. 

Appending, prepending, and cavity type 

Maintains persistency within the computer system   

Infected file is hard to restore 
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What Is A Ransomware? 
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Holds your computer for ransom  

Encrypts files    

Uses cryptocurrency, such as bitcoins, for payment 



11 

What Is Virlock? 
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A ransomware 

A file infector 

Uses on-demand polymorphic algorithm 

Uses metamorphic algorithm 

Locks your screen 
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Just kidding! 
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Debugging Tools 

Confidential 

ollydbg 

 http://www.ollydbg.de/  

immunity debugger 

http://www.immunityinc.com/p

roducts/debugger/ 

x64dbg 

http://x64dbg.com/ 

http://www.ollydbg.de/
http://www.immunityinc.com/products/debugger/
http://www.immunityinc.com/products/debugger/
http://x64dbg.com/


Virlock As A Common Malware 
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Common Reversing 

Confidential 

encrypted/ 

packed 
 

decryptor 

MZ header 

Decrypting/Unpacking 

 malware using a 

debugger 

decrypted/ 

unpacked 
 

decryptor 

MZ header 

1 

Static/Dynamic 

Analysis 

2 



Reversing Stages 
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Reversing Stages 
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.text 
0xbb000 

.rsrc 
0x01200 

A 

.text 

.rsrc 
0x01200 

B 

metamorphic 

algorithm 
0x06C77 

MZ header MZ header 

.text 

.rsrc 
0x01200 

C 

MZ header 

decoded bytes 
0x0250 

.text 

.rsrc 
0x01200 

MZ header 

D 

metamorphic 

algorithm 
0x06C77 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main functions 

Virlock-infected file only 

has 2 sections: .text and 

.rscr 
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Reversing Stages 
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.text 
0xbb000 

.rsrc 
0x01200 

A 

.text 

.rsrc 
0x01200 

B 

metamorphic 

algorithm 
0x06C77 

MZ header MZ header 

.text 

.rsrc 
0x01200 

C 

MZ header 

decoded bytes 
0x0250 

.text 

.rsrc 
0x01200 

MZ header 

D 

metamorphic 

algorithm 
0x06C77 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main functions 

At the entry point, the 

malware executes its 

metamorphic algorithm. 
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Reversing Stages 
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.text 
0xbb000 

.rsrc 
0x01200 

A 

.text 

.rsrc 
0x01200 

B 

metamorphic 

algorithm 
0x06C77 

MZ header MZ header 

.text 

.rsrc 
0x01200 

C 

MZ header 

decoded bytes 
0x0250 

.text 

.rsrc 
0x01200 

MZ header 

D 

metamorphic 

algorithm 
0x06C77 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main functions 

The metamorphic 

algorithm decodes 

the initial decryptor. 
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Reversing Stages 
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.text 
0xbb000 

.rsrc 
0x01200 

A 

.text 

.rsrc 
0x01200 

B 

metamorphic 

algorithm 
0x06C77 

MZ header MZ header 

.text 

.rsrc 
0x01200 

C 

MZ header 

decoded bytes 
0x0250 

.text 

.rsrc 
0x01200 

MZ header 

D 

metamorphic 

algorithm 
0x06C77 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main function 

The initial decryptor 

produces the main 

function. 
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Reversing Stages 
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.text 

.rsrc 
0x01200 

MZ header 

E 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main function 

on-demand poly 

on-demand poly 

on-demand poly 

on-demand poly 

.text 

.rsrc 
0x01200 

MZ header 

F 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main functions 

on-demand poly 

on-demand poly 

on-demand poly 

on-demand poly 

.text 

.rsrc 
0x01200 

MZ header 

G 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main functions 

on-demand poly 

on-demand poly 

on-demand poly 

on-demand poly 

.text 

.rsrc 
0x01200 

MZ header 

H 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main functions 

on-demand poly 

on-demand poly 

on-demand poly 

on-demand poly 

Host file 

The main function calls 

the malicious threads 

and other sub-

functions. Each sub-

function is 

decrypted/re-

encrypted by individual 

on-demand 

polymorphic algorithm. 
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Reversing Stages 
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.text 

.rsrc 
0x01200 

MZ header 

E 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main function 

on-demand poly 
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.text 
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algorithm 
0x06C77 

decoded bytes 
0x0250 
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.text 

.rsrc 
0x01200 

MZ header 
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metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main functions 

on-demand poly 

on-demand poly 

on-demand poly 

on-demand poly 

.text 

.rsrc 
0x01200 

MZ header 

H 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main functions 

on-demand poly 

on-demand poly 

on-demand poly 

on-demand poly 

Host file 

When an on-demand 

polymorphic algorithm 

runs, it decrypts the 

malicious code and 

executes them. Then 

re-encrypts itself and 

the malicious code 

with a different key. 
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Reversing Stages 
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.text 

.rsrc 
0x01200 

MZ header 
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0x06C77 

decoded bytes 
0x0250 

main function 
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decoded bytes 
0x0250 
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on-demand poly 
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on-demand poly 

.text 

.rsrc 
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0x06C77 

decoded bytes 
0x0250 

main functions 

on-demand poly 

on-demand poly 

on-demand poly 

on-demand poly 

Host file 

After executing the 

rest of the 

malicious code, the 

malware in 

memory looks 

totally different 

from its original 

binary content. 
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Reversing Stages 

Confidential 

.text 

.rsrc 
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MZ header 
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0x06C77 
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0x06C77 

decoded bytes 
0x0250 
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on-demand poly 
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.text 

.rsrc 
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0x0250 

main function 

on-demand poly 

on-demand poly 

on-demand poly 

on-demand poly 

Host file 

Finally, the host file 

is decrypted, 

dropped, and 

executed. 



Metamorphic Algorithm 
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Metamorphic Algorithm 

Confidential 

Basics: 

 Putting a value(0) in a register(EAX) 

MOV EAX,0 EAX register gets 0 directly 

XOR EAX,EAX XORing the same register by itself also 

generates a zero value placed into a given 

register 

SUB EAX,EAX SUBtracting any register by itself also 

generates the same result. 

MOV EAX, 0x10 

ADD EAX, 0x10 

SUB EAX, 0x20 

EAX also gets 0 
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Metamorphic Algorithm 

Confidential 

Detection Limitation 

• Hard to find similar bytes 

• Unknown length of bytes 

• Unpredictable code 
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Reversing Stages 
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.text 
0xbb000 

.rsrc 
0x01200 

A 

.text 

.rsrc 
0x01200 

B 

metamorphic 

algorithm 
0x06C77 

MZ header MZ header 

.text 

.rsrc 
0x01200 

C 

MZ header 

decoded bytes 
0x0250 

.text 

.rsrc 
0x01200 

MZ header 

D 

metamorphic 

algorithm 
0x06C77 

metamorphic 

algorithm 
0x06C77 

decoded bytes 
0x0250 

main functions 

At the entry point, the 

malware executes its 

metamorphic algorithm. 
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Metamorphic Algorithm (sample 1) 
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... 

~ 28 kilobytes 

Call to the decrypted 

bytes at the start of the 

.text section. 

Entry Point 

The size of the 

metamorphic code varies 

per infected file. 

 

Approximately 28kb of 

code constitutes the 

metamorphic algorithm 

that generates the rest of 

the malicious code, 

including the polymorphic 

algorithm. 
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Metamorphic Algorithm (sample 1) 
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irrelevant bytes 

decrypted bytes 

first DWORD 

second DWORD 

third DWORD 
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Metamorphic Algorithm (sample 2) 
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irrelevant bytes 

first DWORD 

second DWORD 

third DWORD 

decrypted bytes 
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Metamorphic Algorithm (sample 1) 
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irrelevant bytes 

decrypted bytes 

first DWORD 

second DWORD 

third DWORD 
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Metamorphic Algorithm (sample 2) 

Confidential 

irrelevant bytes 

first DWORD 

second DWORD 

third DWORD 

decrypted bytes 
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Metamorphic Algorithm (comparison) 
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Sample 1 

Sample 2 

first DWORD 

MOV [EDI],ECX 

MOV [EAX],ESI 
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Metamorphic Algorithm (comparison) 

Confidential 

Sample 2 

second DWORD 

Sample 1 

MOV [EAX],EBX 

MOV [EDI],EBX 
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Metamorphic Algorithm (comparison) 
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Sample 2 

third DWORD 

Sample 1 

MOV [EDX],ESI 

MOV [EBX],ECX 
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Metamorphic Algorithm (detection) 
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Sample 2 Sample 1 

MOV EAX, -------- 

NOP 

JMP 0040108B 



Demo – Metamorphic Algorithm 



Virlock As A File Infector 
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Cleaning: How To Clean An Infected File 

Confidential 

Basics: 

• Determine the kind of virus 

• Determine how to extract and restore the host 

file 
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Different Kinds Of File Infectors 

Confidential 

Basics: 

• Appending 

• Prepending 

• Cavity 

• Overwriting 

• Companion 
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Different Kinds Of File Infectors 

Confidential 

appending prepending cavity 

overwriting 
companion 

virlock 
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Cleaning: Extracting The Host File From Virlock 

Confidential 

Details: 

• Host file is encrypted and embedded within the 

malware 

• DecryptionKey can be found within the malware 

• DecryptionKey is encrypted using a simple XOR 

• Uses a simple decryption algorithm to extract the 

host file 
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Reversing Stages 
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on-demand poly 

Host file 

Finally, the host file 

is decrypted, 

dropped, and 

executed. 
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Cleaning: Extracting The Host File From Virlock 
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EBX = initial key 

XORing EBX with dword in [ESI] 

generates the DecryptionKey 

ECX = EBX = DecryptionKey 

EBX = the next DWORD 

ESI = location of the encrypted DecryptionKey 

Decrypts the  

HOST file   
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Cleaning: Extracting The Host File From Virlock 
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Decrypts the  

HOST file   

DecryptionKey 

Original Host 

Filename Encrypted Host File 

Decrypted Host File 



Virlock As A Polymorphic Malware 
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Reversing Stages 
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.text 
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MZ header 
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algorithm 
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decoded bytes 
0x0250 

main functions 
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on-demand poly 

on-demand poly 

on-demand poly 

Host file 

When an on-demand 

polymorphic algorithm 

runs, it decrypts the 

malicious code and 

executes them. Then 

re-encrypts itself and 

the malicious code 

with a different key. 



Dynamic Routine Execution Map 
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Dynamic Routine Execution Map 

Confidential 
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Dynamic Routine Execution Map 

Confidential 
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Dynamic Routine Execution Map 

Confidential 
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Dynamic Routine Execution Map 

Confidential 
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Dynamic Routine Execution Map 

Confidential 
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Dynamic Routine Execution Map 

Confidential 



On-Demand Polymorphic Algorithm 
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On-Demand Polymorphic Algorithm 

Confidential 

Implementation 

• Uses Decryptor to decrypt a block of code using 

an old key 

• Executes the newly decrypted code 

• Uses RDTSC (Read Time-Stamp Counter) to 

generate a new dword value 

• Uses NewKeyGenerator to generate new key 

• Uses Encryptor to encrypt the same block of 

code using the new key 

newly decrypted 

code 

RDTSC 
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Decryptor 

Confidential 

Features: 

• Uses garbage code 

• Keygen function for redundancy check 

• Uses XOR to generate the key 

• Uses XOR to decrypt a block of code 
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Decryptor 

Confidential 

garbage code 

# of bytes to 

generate the key 

actual key 

generator; 

EAX starts with 

0xFFFFFFFF 

starting location 

of key-bytes 

XOR decryptor keygen function 

generates the 

same EAX value 

(key) 



67 

On-Demand Polymorphic Algorithm 
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Implementation 

• Uses Decryptor to decrypt a block of code using 

an old key 

• Executes the newly decrypted code 

• Uses RDTSC (Read Time-Stamp Counter) to 

generate a new dword value 

• Uses NewKeyGenerator to generate new key 

• Uses Encryptor to encrypt the same block of 

code using the new key 

newly decrypted 

code 

RDTSC 
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On-Demand Polymorphic Algorithm 
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Implementation 

• Uses Decryptor to decrypt a block of code using 

an old key 

• Executes the newly decrypted code 

• Uses RDTSC (Read Time-Stamp Counter) to 

generate a new dword value 

• Uses NewKeyGenerator to generate new key 

• Uses Encryptor to encrypt the same block of 

code using the new key 

newly decrypted 

code 

RDTSC 
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On-Demand Polymorphic Algorithm 
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Implementation 

• Uses Decryptor to decrypt a block of code using 

an old key 

• Executes the newly decrypted code 

• Uses RDTSC (Read Time-Stamp Counter) to 

generate a new dword value 

• Uses NewKeyGenerator to generate new key 

• Uses Encryptor to encrypt the same block of 

code using the new key 

newly decrypted 

code 

RDTSC 
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NewKeyGenerator 
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Implementation: 

• RDTSC generates a new dword value 

• Saves it in different memory locations  

• The memory locations are within the memory 

range that contains key bytes 

• Generates new key by XORing the key bytes 

• Saves the new key to the original location of the 

old key used in the Decryptor 
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NewKeyGenerator 
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location of the 

bytes needed to 

generate the 

new key 

starting location 

is one byte 

before the first 

DWORD value  

from RDTSC  

EAX = DWORD value 

NEW KEY 
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NewKeyGenerator 
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NEW KEY 

old key 

new key 

location of the NEW KEY 
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On-Demand Polymorphic Algorithm 
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Implementation 

• Uses Decryptor to decrypt a block of code using 

an old key 

• Executes the newly decrypted code 

• Uses RDTSC (Read Time-Stamp Counter) to 

generate a new dword value 

• Uses NewKeyGenerator to generate new key 

• Uses Encryptor to encrypt the same block of 

code using the new key 

newly decrypted 

code 

RDTSC 
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On-Demand Polymorphic Algorithm 
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Implementation 

• Uses Decryptor to decrypt a block of code using 

an old key 

• Executes the newly decrypted code 

• Uses RDTSC (Read Time-Stamp Counter) to 

generate a new dword value 

• Uses NewKeyGenerator to generate new key 

• Uses Encryptor to encrypt the same block of 

code using the new key 

newly decrypted 

code 

RDTSC 
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Encryptor 
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Features: 

• Uses the same algorithm as the Decryptor 

• Uses the new key to encrypt the same block of 

code 
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Sample On-demand Polymorphic Values 
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1C B0 19 99  

F4 C7 7E 64  

E2 40 7B 9A 

F4 00 7B F1 

E8 B0 62 02 

00 C7 05 FF 

16 40 00 01 

00 00 00 6A 

75 EB 89 E2 

9D 9C EE 1F 

8B 1B EB E1 

9D 5B EB 8A 

encrypted with OLD KEY 

decrypted code 

encrypted with NEW KEY 
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Detection 
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1C B0 19 99  

F4 C7 7E 64  

E2 40 7B 9A 

F4 00 7B F1 

E8 B0 62 02 

00 C7 05 FF 

16 40 00 01 

00 00 00 6A 

75 EB 89 E2 

9D 9C EE 1F 

8B 1B EB E1 

9D 5B EB 8A 

encrypted with OLD KEY 

decrypted code 

encrypted with NEW KEY 
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Detection 
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location of the 

bytes needed to 

generate the 

new key 

starting location 

is one byte 

before the first 

DWORD value  

from RDTSC  

EAX = DWORD value 

NEW KEY 
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Detection 
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location of the 

bytes needed to 

generate the 

new key 

starting location 

is one byte 

before the first 

DWORD value  

from RDTSC  

EAX = DWORD value 

NEW KEY 
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Dynamic Routine Execution Map 
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Virlock As A Ransomware 



Visible Signs of Infection 
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Eradication 
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Eradication 
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• Manually create solution to clean the infected 

files 

• Download reliable standalone solution to remove 

the malware from the system 

• Always make sure that your antivirus and 

security apps are updated 
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What if your system is already locked? 

Confidential 

Steps: 

• Reboot the system on safe mode 

• Remove the malware entry on the startup 

registry 

• Then go back to eradication stage 



Demo – Unlocking Virlock 
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Wrap Up 
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• For reversing: 

 Set a breakpoint at the end of metamorphic 

algorithm 

 Copy the decrypted code from memory 

 

• For detection: 

 Get patterns from the decrypted code 

 

• For cleaning: 

 Remove the entries from the registry keys 

 Extract the host file  

 



Mulțumesc! 




