
Black Box Debugging of Embedded

Systems

Introduction: Alexandru Ariciu

• Background in hacking

• “Worked” as a hacker for my whole life

• Worked in corporate security before (Pentester)

• Currently an ICS Penetration Tester / Vulnerability Researcher for Applied

Risk

• Linkedin: https://www.linkedin.com/in/alexandru-ariciu-856bb566

• Twitter: @1n598

https://www.linkedin.com/in/alexandru-ariciu-856bb566

Target Device

• Data acquisition and transmission device

• Used in distributed control systems

• Over 300 directly connected to the internet.

• More connected internally, mostly in level 0 and level 1 SCADA networks

Prerequisites

• ARM knowledge

• Reverse engineering

• Some hardware hacking (we will cover that part)

Goal

• Provide a means to develop additional advanced functionality to this

device; such as execution of arbitrary code

By means of:

• Injecting the device with modified firmware, to enable debugging on the

device, and step trough custom code without bricking the device

Complication:

• There is no datasheet of the chip available, firmware is proprietary

ARM crash course

• ARM is a 32 bit RISC processor

• Processor is little endian

• Opcodes are 32bit, and align on a 4 byte boundary

• All code, data and peripherals share the same 32 bit
memory address space

• After a (re)boot code starts running from 0x00000000

• ARM has 16 32-bit base registers and a CPSR (current
program status register)

• Most opcodes can be modified by condition fields

• A 3 stage pipeline is used, so PC is 2 instructions (8 bytes)
ahead of the currently executed instruction

• A branch flushes the pipeline

Used ARM Instruction Set
Mnemonics Description

LDR(B)

LDMFD

load a single value from a virtual
address in memory
store multiple 32 bit registers to memory

MOV move a 32 bit value into a register
MRS move to ARM register from a status

register (cpsr or spsr)
MSR move to a status register (cpsr or spsr)

from an ARM register
ORR logical bitwise OR of two 32 bit values
STMFD store multiple 32 bit registers to memory
STR(B) store register to a virtual address in memory
SUB subtract two 32 bit values

ADD add two 32 bit values
AND logical bitwise AND of two 32 bit values
B branch relative +/- 32MB
BL relative branch with link
CMP compare two 32 bit values

LSL left shift a 32 bit register

ARM Condition field modifiers

ARM Registers

Outline

• Output console

• Initial Infection

• Initial firmware patch with basic debugger

• Advanced debugging capabilities implementation

The process we will follow

1. Evaluate ways to interact with the device (UART, webserver, …)

2. Evaluate ways to make the device run custom code (buffer overflow,

firmware modification, …)

3. Find a suitable place to inject code, to create reliable behavior(e.g. when

calling a certain function)

4. Reverse engineer how the device interacts with the interfaces, and find

functions such as printf that we can reuse

5. Combine existing functionality with our custom code, to provide (printf)

feedback to our code execution

• From here on out we can reverse engineer more functions to perform

more advanced actions such as;

• getc, so we can interact with our running code

• read/write memory to evaluate and modify other system behavior

Process: Step 1

Evaluate ways to interact with the device (UART, webserver, …)

Interacting with the device: Output Console

• UART, Serial, JTAG, others

Process: Step 2

Evaluate ways to make the device run custom code

Process: Step 3

Find a suitable place to inject code, to create reliable behavior

Finding where to put our code: Initial basic debugger

• Load the code into IDA

• Select ARM Little Endian

as the processor type

• Select 0x20 as file offset

• Click OK

Initial basic debugger

• The idea now is to find a function that is printing stuff in the console

• We will patch that function to print a string whenever we call that console

command

• We used sys mem (function for displaying memory in the console)

Initial basic debugger

• We will modify this so that when we call sys mem in the console ”Hello !”

will appear

Initial basic debugger

• Let’s find the function in IDA

Initial basic debugger

• This is the assembly for the function “sys mem”

• We will patch this to jump to our ”initial patch”

Process: Step 4

Reverse engineer how the device interacts with the interfaces, and find

functions such as “printf” that we can reuse

Initial basic debugger

• It seems our sys mem function already calls a printf function we can

reuse

Process: Step 5

Combine existing functionality with our custom code, to provide

(printf) feedback to our code execution

Initial basic debugger

• The initial patch will contain three simple elements

1. Load in R0 a string of our choosing

2. Call to printf

3. A return to where we left off (so that the device continues

working)

• Let’s dive into some more details

Initial basic debugger

• We will modify the BL sub_0x644c0 to jump to our code

• Our code will be hosted in a place in the binary (our choosing)

Initial basic debugger

• BL is relative

• That is, it will jump not to definitive addresses but to addresses that are

calculated relative to the PC position at the moment of the jump

• BL is more like ADD PC, PC, #jump

• It also stores the current address in the link register so that the processor

knows where to come back

Initial basic debugger

• The BL instruction has the ARM opcode 0xEB

• The remainder of the three bytes are the address where to make the

jump

• We need to calculate this

Initial basic debugger

• If we are at position X in the binary (0x2714 for us)

• And we want to jump at Y

• Then the address where to make the jump is like this (Y-X)/4-0x2

• This is because we can only jump 4-bytes at a time(1 instruction=4

bytes), and the PC is always 2 instructions ahead due to instruction

pipelining

• For BL to 0x6440 this would be

(0x644C0-0x2714)/4-0x2 = 0x18769

Initial basic debugger

• Find space to host the shellcode (for the initial infection)

• We will terminate one of the strings early

so that we don’t modify the length of the

binary

• A good place is where the Free/Memory

string is

Initial basic debugger

• We will modify the string at

address 0x10F6A2 (with the initial

offset it will be 0x10F6A2 +0x20)

• Add 0D 0A 00 00 00 00 (We will end the

string with a null terminator)

Initial basic debugger

• We will store the shellcode starting with 0x10F6A8

• So our BL should be like BL *(0x10F6A8)

• Based on the calculation it is (0x10F6A8-0x2714)/4 – 0x2 = 0x433E3

• So the opcode should be 0xEB0433E3

• Let’s patch and watch in IDA

Initial basic debugger

• When opening in IDA, the assembly should point to our location if we did

the right calculations

• It seems it’s working

Initial basic debugger

• Well the code is not really what we expected

• But we didn’t patch it to contain our code

• Yet

Initial basic debugger

• This location must be patched to do the following:

• Patch a string in memory

• Load a string in the R0 register

• Jump to printf

• Return (load link register in PC)

Initial basic debugger

• Loading a string can be done using

• SUB R0, PC, 0x22

• This basically will load in R0 a string located 22 bytes before the

program counter.

• So we need to calculate (0x10F6A8 + 0x8) - 0x22 = 0x10F68E

• The string is Hello !

• In the hexeditor, starting at address 0x0010F6AB modify the code to

contain 0D 0A 00 48 65 6C 6C 6F 21 0D 00 00 00

• We patched the „Hello!“ in the memory without breaking stuff around

Initial basic debugger

• It should look like this in the Hex Editor

Initial basic debugger

• Load the String in R0

• 0x0010F6C8 : 22 00 4F E2 # SUB R0, PC, 0x22

• Let‘s load again in IDA

Initial basic debugger

• We need to jump to printf

• The BL is relative to 0x10F6A8

• The opcode is 0x0010F6CC : 83 53 FD EB # BL printf(0x644C0)

Initial basic debugger

• Now we need to return

• 0x0010F6D0 : 0E F0 A0 E1 # MOV PC, LR (RET)

• Looks perfect

Process: Moving on to advanced debugging

• From here on out we can reverse engineer more functions to

perform more advanced actions

• What we developed so far can be used for debugging, in case

something goes wrong.

• We will focus on reverse engineering;

• getchar(), so we can interact with our running code

• read/write memory functions to evaluate and modify system behavior

Advanced Debugging Capabilities: Goals

We want to create an interactive debugger using the serial input and output

• We will implement a loop that in pseudocode would be similar to this:
While (1):

char = getchar()
if char == 0:

exit
if char == 6:

print ”tst”
if char == x:

do_y()

• We already have the printf() – for writing output

• We need the getchar() function – for capturing user input

Advanced Debugging Capabilities: finding getchar()

Advanced Debugging Capabilities: finding getchar()

Advanced Debugging Capabilities

Advanced Debugging Capabilities

Advanced Debugging Capabilities: our getchar()

• Byte getchar(void), returns 1 char in R0

Advanced Debugging Capabilities: the assembler

• We need the assembler to know where cyg_io_read is (and also printf)

• The ORG directive helps us doing that

• The _start directive tells the assembler at what memory address the code

is located, so that Branches can be calculated accordingly

Advanced Debugging Capabilities: calling getchar()

• Basic loop that will read a character and exit if it’s 0

• If the character is 6, then the shellcode will print “tst”

Advanced Debugging Capabilities: printf()

• If the character is 6, then the shellcode will print “tst”

• we define the string; 'tst/n‘, at the bottom, in the code section

Advanced Debugging Capabilities: first compile

• Write the whole assembly code in a text file

Advanced Debugging Capabilities

• Assemble everything

• Link and convert the object code to binary

• Split the file, so that only the shellcode at 0x11C394 is left

Advanced Debugging Capabilities

• We have getc

• We have printf

• We can exit

• The initial loop is done (just with

exit functionality)

• Time to add some debugging

capabilities

Advanced Debugging Capabilities

• Adding functionality for reading words (so that we can use them to

read/write memory addresses)

Advanced Debugging Capabilities

• Adding read memory

capabilities (read and display

memory to the user)

Advanced Debugging Capabilities

• Adding write memory

capabilities (write into the

device memory)

Advanced Debugging Capabilities

Breakpoints: stop normal execution for analysis of current

processor state, and code stepping

Creating our breakpoint mechanism:

• stopping code execution

• calling our debugger from the running code

We just patch a branch-instruction from where we want to call

our debugger, and restore the original instruction on exit

Advanced Debugging Capabilities: calling our

debugger

• Storing registers on the stack on initial call

• Restoring the registers on exit

Advanced Debugging Capabilities

• Adding read register capabilities

Advanced Debugging Capabilities

• Adding write register capabilities

Advanced Debugging Capabilities

• Adding breakpoint capabilities: restoring the original code

Advanced Debugging Capabilities

• Literal pools and string definitions

Advanced Debugging Capabilities

• Adding breakpoint capabilities: writing a new breakpoint

Advanced Debugging Capabilities

• Adding breakpoint capabilities: writing a new breakpoint, and storing

the old instruction for restoration on the next call

Advanced Debugging Capabilities

• We now have a basic debugger that can read/write memory, read/write

registers and set breakpoints.

• We have written everything in Assembler language, now we need to

assemble it again

Advanced Debugging Capabilities

• Uploading the debugger on the device requires some more manual

tasks to prepare the binary with a hex editor

• The sys mem function jump that we used at the beginning must be

patched to jump to our shellcode, by hex editor

• The shellcode must be added to the firmware file at a suitable place

such as the address 0x11c394 by hex editor

• Check the code in IDA before uploading. Make sure the code works

as expected (it should look almost identical with the code in code.s)

Advanced Debugging Capabilities

• Upload the firmware on the device

• Run sys mem in the console

• Press 6 to check if it works. The console should display “tst”

• Test other capabilities

• Next steps…

Conclusions & implications

• Use proper firmware verification

• Use hardware based integrity verification checks

• Don’t connect ICS to the internet ☺

Questions?

