
ptsecurity.com

What's wrong?

This is just an IDS signature

Kirill Shipulin
Positive Technologies @attackdetection

Why this talk?

IDS/IPS fixes known bypasses

Signatures are not perfectly safe

Sigs developers have limited time

Interesting methods were found

Introduction to IDS

Monitors all network traffic L2–L7

Dissects from IP to DCERPC

Big ruleset

> 20,000 ET open signatures

Daily updates

How IDS engine works

Common bypass techniques

Fragmentation, IP or TCP

TTL/MTU

TCP overlap: TCP SYN numbers overlap

TCP un-sync: fake TCP FIN packet

Session timeout

Common bypass techniques

HTTP GZIP without header

HTTP double encoding

POP3/IMAP quoted-printable encoding

Ask WAF about normalization bypasses

Common bypass techniques

Check out

Alternative sources

Bug trackers

Sec lists

Release notes

Check out

Bug trackers

Sec lists

Release notes

Don't forget third party libs

Alternative sources

Bug #1880 ICMP Unreachable confusion

BadTunnel goes undetected if an ICMP was seen first

@attackdetection

Bypass rules

SigDevs usually:

Use public exploits

Don't study vulnerabilities in depth

Have phobias about:

- False positives

- Low performance

Bypass rules, not IDS

- Just change HTTP arguments

/connect.cgi?action=checkPort&port=4444`id

/connect.cgi?port=4444`id&action=checkPort

- Or add a whitespace

<OBJECT … classid =

Bypass rules, not IDS

Bypass rules, not IDS

Why this happens?

Developing a quality signatures requires a range of skills

Developers focus not on an attack but on writing signature

Not a universal bypass

More danger vulnerability → More quality signature(s)

Not any signature may be bypassed

While planning IDS/IPS capacity, follow the rule of
thumb:

- 1 CPU = (1000 signatures) * (500 Mbps)

Ruleset performance

While planning IDS/IPS capacity, follow the rule of
thumb:

- 1 CPU = (1000 signatures) * (500 Mbps)

But:

- Signatures are not the same

- Traffic isn't the same

Ruleset performance

Top of perf log

- Bad traffic
- Slow rules

Ruleset performance

Run a whole ruleset on your corporate traffic

Exploitation scheme

Investigate the top of the performance log

Amplify

- Take the 7th from the top.

Num Rule Avg Ticks

-------- ------------ -----------

7 2016204 1114290.50

Step 2. What's on top?

- 1 million ticks in average. Looks profit!

alert http any any -> $HTTP_SERVERS any (

reference: cve, 2013-0156;

flow:established,to_server;

content:" type"; nocase; fast_pattern;

content:"yaml"; distance:0; nocase;

content:"!ruby"; distance:0; nocase;

pcre:"/<(?P<tname>[^\s]+)[^>]*?\stype\s*

=\s*(?P<q>[\x22\x27])yaml(?P=q)((?!<\/(?

P=tname)).+?)!ruby/si";

sid:2016204; rev:4;

)
https://github.com/Cisco-Talos/file2pcap

Step 2. What's on top?

https://github.com/Cisco-Talos/file2pcap

Assumptions:

Find no match is more expensive than find any

PCRE is more expensive than substring search

Suricata IDS built in perf mode

rule_perf.log

keyword_perf.log

Try and see what happens

“ typeyaml!ruby”

Num Rule Avg Ticks

-------- ------------ -----------

1 2016204 57630.00

Keyword Ticks Checks Matches

------- ----- ------- -------

content 18765 4 3

pcre 18985 1 0

rule_perf.log

keyword_perf.log

Try and see what happens

● Reverse PCRE and find a string it searches for

● Play around until PCRE check get costly

Try and see what happens

https://regex101.com/r/mV9ApT/1

<a type="yaml" !ruby : 32 steps, match

<a type="yaml" !rub : 57 steps, no match

Try and see what happens

https://regex101.com/r/mV9ApT/1

<a type="yaml" !ruby : 32 steps, match

<a type="yaml" !rub : 57 steps, no match

2 x (<a type="yaml" !rub) : 209 steps

10 x (<a type="yaml" !rub) : 9885 steps

100 x (<a type="yaml" !rub) : timeout

Try and see what happens

Keyword Ticks Checks Matches

-------- -------- ------- --------

content 19135 4 3

pcre 1180797 1 0

Try and see what happens

Keyword Ticks Checks Matches

-------- -------- ------- --------

content 19135 4 3

pcre 1180797 1 0

● MATCH_LIMIT_DEFAULT 3500

● MATCH_LIMIT_RECURSION_DEFAULT 1500

Try and see what happens

typeyaml!ruby typeyaml!ruby

Try and see what happens

typeyaml!ruby typeyaml!ruby

Keyword Avg. Ticks Checks Matches

-------- ---------- ------- --------

content 3338 7 6

pcre 12052 3 0

Try and see what happens

typeyaml!ruby typeyaml!ruby

Keyword Avg. Ticks Checks Matches

-------- ---------- ------- --------

content 3338 7 6

pcre 12052 3 0

content 1508 1507

pcre 1492 0

Try and see what happens

typeyaml!ruby typeyaml!ruby

Keyword Avg. Ticks Checks Matches

-------- ---------- ------- --------

content 3338 7 6

pcre 12052 3 0

content 3626 1508 1507

pcre 1587144 1492 0

Try and see what happens

Step 3. Amplification

- Wow! A 1,000 times amplification

Num Rule Avg Ticks

-------- ------------ -----------

1 2016204 3302218139

— What is 3 billion ticks?

— A second for a CPU.

Step 3. Amplification

— What is 3 billion ticks?

— A second for a CPU.

Step 3. Amplification

- CVE-2017-15377 was assigned

- Still many signatures there

Exploitation

8 out of 40 cores of

Intel(R) Xeon(R) E5-

2650 v3 2.30GHz

Exploitation

1 HTTP POST

1 Second

1 CPU/Core

100% CPU

Load

+ CPUs usually are already busy

250 Kbps, 10 HTTP POST Requests per second

Exploitation

- But there is still several hardest signatures

- Suricata 4.0.0 performance log top:

Num Rule Avg Ticks

-------- -----------------------

1 2023484 3114290.50

2 2021214 2246577.58

3 2017073 1651243.00

4 2017817 543130.00

5 2017899 534586.00

Exploitation

Signatures everywhere

– WAF

– Antivirus

– IDS/IPS

– Firewall

– Traffic analyzer

Exploitation

There's always a group of most consuming signatures

on the top

Things we learned

Such technique cannot be detected

Same method applies to other systems (Snort tested)

Open ruleset is the key

SigDevs have to test their signatures on real traffic

Thank you!

ptsecurity.com

@attackdetectionKirill Shipulin

