SHA-3 vs the world

David Wong

Snefru

MD2

MDA4

MD5
RIPEMD
HAVAL-128
SHA-0
SHA-1
RIPEMD-160
SHA-2

http://valerieaurora.org/hash.html

National Institute of Standards and Technology EAR H'_
NH information Technology Laboratory S CH. m
CONTACT SITE MAP

Computer Security Division

Computer Security Resource Center

CSRC Home About Projects / Research Publications News & Events

CSRC HOME > GROUPS > CT > HASH PROJECT > SHA-3
Cryptographic Hash & SHA-3

Standard Development SHA-3 COMPETITION (2007-2012)

Pre-SHA3 Competition (2004-2007)

SHA-3 Competition (2007-2012) Research Results on SHA-1 Collisions (2017)

— : NIST announced a public competition in a Federal Reqister Notice on November
Sub R t
UDIISSIoN ROqUiromonts 2, 2007 to develop a new cryptographic hash algorithm, called SHA-3, for

Round 1 standardization. The competition was NIST’s response to advances made in the

Round 2 cryptanalysis of hash algorithms.

Round 3 NIST received sixty-four entries from cryptographers around the world by

o October 31, 2008, and selected fifty-one first-round candidates in December

SHA-3 Standardization (2013-2015) 2008, fourteen second-round candidates in July 2009, and five finalists —
SHA-3 Derived Functions (2016) BLAKE, Grastl, JH, Keccak and Skein, in December 2010 to advance to the
NIST Policy on Hash Functions third and final round of the competition.
Hash Forum Throughout the competition, the cryptographic community has provided an
Contacts enormous amount of feedback. Most of the comments were sent to NIST and a

public hash forum; in addition, many of the cryptanalysis and performance
studies were published as papers in major cryptographic conferences or leading
cryptographic journals. NIST also hosted a SHA-3 candidate conference in each
round to obtain public feedback. Based on the public comments and internal
review of the candidates, NIST announced Keccak as the winner of the SHA-3
Cryptographic Hash Algorithm Competition on October 2, 2012, and ended the
five-year competition.

SANIN TV LA L L L L

~Computer ecunty Division .
Computer Security Resource Center

CSRC Home About Projects / Research Publications News & Events

CSRC HOME > GROUPS > CT > HASH PROJECT > SHA-3 > ROUND 1
Cryptographic Hash & SHA-3
Standard Development FIRST ROUND CANDIDATES

e Official comments on the First Round Candidate Algorithms should be submitted
SHA-3 Competition (2007-2012) using the "Submit Comment" link for the appropriate algorithm. Comments from
hash-forum listserv subscribers will also be forwarded to the hash-forum listserv.
We will periodically post and update the comments received to the appropriate

Submission Requirements

Round 1 .
algorithm.
Round 1 Candidates
. Please refrain from using OFFICIAL COMMENT to ask administrative questions,
ound 1 Conference . n .
which should be sent to hash-function@nist.gov

Round 1 Report
By selecting the "Submitter’s Website" links, you will be leaving NIST webspace. We have

Round 2 provided these links to other web sites because they may have information that would be of
Round 3 interest to you. No inferences should be drawn on account of other sites being referenced, or not,
from this page. There may be other web sites that are more appropriate for your purpose. NIST

does not necessarily endorse the views expressed, or concur with the facts presented on these
sites. Further, NIST does not endorse any commercial prod‘cts that may be mentioned on these

SHA-3 Standardization (2013-) s

NIST Policy on Hash Functions

LoD History of Updates
Contacts
Algorithm Name Principal Submitter* Comments
** Abacus [9M] Neil Sholer submit Lomment
View Comments
ARIRANG [18M] Jongin Lim S\?bmié Commetnt
Updated Algorithm [16M] iew Comments
Submitter's Website***
AURORA [12M] Masahiro Fujita Submit Comment
View Comments

PSS AR (PSR T =LY, | N

Keccak

BLAKE, Grostl, JH, Skein

Sponge Construction

permutation-based cryptography

Sponge Construction

Sponge Construction

message

Sponge Construction

message

I

Sponge Construction

message

&

Sponge Construction

message

&

Sponge Construction

message

&

Sponge Construction

message

0 &

absorbing

Sponge Construction

message output

0 &

absorbing

Sponge Construction

message output

T

0 &

f

> >

O —

absorbing

Sponge Construction

message /o(utput
o L4 \ el
f f
O —> > >

absorbing

message

&

>

absorbing

Sponge Construction

T

>

f

output

/

message

&

>

absorbing

Sponge Construction

T

>

f

output

/

squeezing

message

&

absorbing

Sponge Construction

24 rounds in SHA-3

output

/

squeezing

Guido Bertoni!, Joan Daemen!2, Michaél Peeters! and Gilles Van Assche!

1STMicroelectronics
2Radboud University

This page lists all the third-party cryptanalysis results that we know of on Keccax, including FIPS 202 and SP 800-
185 instances, KancarooTwewve and the authenticated encryption schemes Kerxe and Kevax. We may have forgotten
some results, so if you think your result is relevant and should be on this page, please do not hesitate to contact us.

The results are divided into the following categories:

» analysis of the Keccax (covering also KancarcoTwewve, FIPS 202 and SP 800-185 instances) in the context of

(unkeyed) hashing;

» analysis that is more specifically targetting keyed modes of use of Ksccax, including the Kere and Kevax :

authenticated encryption schemes;
« analysis on the (reduced-round) Keccax-f permutations that does not extend to any of the aforementioned
cryptographic functions. N

In each category, the most recent results come first.

Analysis of unkeyed modes

First, the Crunchy Crypto Collision and Pre-image Contest contains third-party cryptanalysis results with practical
complexities.

K. Qiao, L. Song, M. Liu and J. Guo, New Collision Attacks on Round-Reduced Keccax, Eurocrypt 2017

In this paper, Kexin Qiao, Ling Song, Meicheng Liu and Jian Guo develop a hybrid method combining algebraic and
differential techniques to mount collision attacks on Keccax. They can find collisions on various instances of Keccax
with the permutation Keccax-f[1600] or Keccax-f{800] reduced to 5 rounds. This includes the 5-round collision
challenges in the Crunchy Contest. In the meanwhile, they refined their attack and produced a 6-round collision that

took 230 evaluations of reduced-round Keccax-f] 1600).

D. Saha, S. Kuila and D. R. Chowdhury, SymSum: Symmetric-Sum Distinguishers Against Round Reduced

Specifications summary

Tune Keccax to your requirements
Third-party cryptanalysis

Our papers and presentations
Keccax Crunchy Crypto Collision
and Pre-image Contest

The Keccax Team

The FIPS 202 standard

The Keccax reference

Files for the Keccax reference
The Keccax SHA-3 submission
Keceax implementation overview
Cryptographic sponge functions
all files...

Note on side-channel attacks and
their countermeasures

Note on zero-sum distinguishers
of Keccax-f

Note on Keccax parameters and
usage

On alignment in Keccax

Saxura: a flexible coding for tree
hashing

A software interface for Kecoax

Keccak

Guido Bertoni, Joan Daemen, Michaél Peeters and Gilles Van Assche

2007

SHA-3 competition

2012

2007

SHA-3 competition

BLAKE2 —| 2012

Hash functions speed (MiBps)

947

BLAKE2b

SHA-1 9209

BLAKEZ2s

MD5

SHA-512

SHAKE-128

SHA-256

SHA3-256

SHA3-512

0 200 400 600 800 1000

« WolfSSL: WolfSSL includes BLAKE2b
» OpenSSL: OpenSSL includes BLAKE2b and BLAKEZ2s
» Wireguard: The Wireguard VPN uses BLAKEZ2s for hashing and as a MAC
« Botan: The Botan library includes BLAKE2b
o Crypto++: The Crypto++ library includes BLAKE2s and BLAKE2b
» Noise: The Noise protocol (now used in WhatsApp) uses BLAKE2s and BLAKEZ2b
« Cifra Extrema: Cifra Extrema products use several versions of BLAKEZ2 in its servers and satellite modules
« Bouncy Castle: Includes BLAKE2b-160, BLAKE2b-256, BLAKE2b-384, and BLAKE2b-512
Peerio: BLAKEZ2s is used to generated IDs and for integrity checks
8th: BLAKEZ2s is the default hash in the 8th cross-platform development system
librsync: BLAKE2b is the default hash un this popular remote delta-compression library
checksum: BLAKEZ2s is one of the three hash functions supported with MD5 and SHA-1
Password hashing schemes:
o Argon2 (by Biryukov, Dinu, Khovratovich; PHC winner)
o Catena (by Forler, Lucks, Wenzel; PHC candidate)
o Lanarea (by Mubarak; PHC candidate)
o Lyra and Lyra2 (by Simplicio Jr., Barreto, Almeida, Andrade; PHC candidate)
o Neoscrypt (by Doering)
o RIG (by Chang, Jati, Mishra, Sanadhya; PHC candidate)
o TwoCats (by Cox; PHC candidate)
> Yarn (by Capun; PHC candidate)
 Crypto tools by catid:
o Cymric ("portable secure random number generator")
o Snowshoe ("portable, secure, fast elliptic curve math library")
o Tabby ("strong, fast, and portable cryptographic signatures and handshakes")
« Sodium: BLAKEZ2D is the default hash function of this cryptography library based on NaCl
« Accumulus: BLAKEZ2s is used for producing unique keys of the data stored
» Archivarius 3000: BLAKEZ2s is used for deduplication in this desktop search system

« WolfSSL: WolfSSL includes BLAKE2b
» OpenSSL: OpenSSL includes BLAKE2b and BLAKEZ2s
» Wireguard: The Wireguard VPN uses BLAKEZ2s for hashing and as a MAC
« Botan: The Botan library includes BLAKE2b
o Crypto++: The Crypto++ library includes BLAKE2s and BLAKE2b
» Noise: The Noise protocol (now used in WhatsApp) uses BLAKE2s and BLAKEZ2b
« Cifra Extrema: Cifra Extrema products use several versions of BLAKEZ2 in its servers and satellite modules
« Bouncy Castle: Includes BLAKE2b-160, BLAKE2b-256, BLAKE2b-384, and BLAKE2b-512
Peerio: BLAKEZ2s is used to generated IDs and for integrity checks
8th: BLAKEZ2s is the default hash in the 8th cross-platform development system
librsync: BLAKE2b is the default hash un this popular remote delta-compression library
checksum: BLAKEZ2s is one of the three hash functions supported with MD5 and SHA-1
Password hashing schemes:
o Argon2 (by Biryukov, Dinu, Khovratovich; PHC winner)
o Catena (by Forler, Lucks, Wenzel; PHC candidate)
o Lanarea (by Mubarak; PHC candidate)
o Lyra and Lyra2 (by Simplicio Jr., Barreto, Almeida, Andrade; PHC candidate)
o Neoscrypt (by Doering)
o RIG (by Chang, Jati, Mishra, Sanadhya; PHC candidate)
o TwoCats (by Cox; PHC candidate)
> Yarn (by Capun; PHC candidate)
 Crypto tools by catid:
o Cymric ("portable secure random number generator")
o Snowshoe ("portable, secure, fast elliptic curve math library")
o Tabby ("strong, fast, and portable cryptographic signatures and handshakes")
« Sodium: BLAKEZ2D is the default hash function of this cryptography library based on NaCl
« Accumulus: BLAKEZ2s is used for producing unique keys of the data stored
» Archivarius 3000: BLAKEZ2s is used for deduplication in this desktop search system

« WolfSSL: WolfSSL includes BLAKE2b
» OpenSSL: OpenSSL includes BLAKE2b and BLAKEZ2s
» Wireguard: The Wireguard VPN uses BLAKEZ2s for hashing and as a MAC
« Botan: The Botan library includes BLAKE2b
o Crypto++: The Crypto++ library includes BLAKE2s and BLAKE2b
» Noise: The Noise protocol (now used in WhatsApp) uses BLAKEZ2s and BLAKEZ2b
« Cifra Extrema: Cifra Extrema products use several versions of BLAKEZ2 in its servers and satellite modules
« Bouncy Castle: Includes BLAKE2b-160, BLAKE2b-256, BLAKE2b-384, and BLAKE2b-512
Peerio: BLAKEZ2s is used to generated IDs and for integrity checks
8th: BLAKEZ2s is the default hash in the 8th cross-platform development system
librsync: BLAKE2b is the default hash un this popular remote delta-compression library
checksum: BLAKEZ2s is one of the three hash functions supported with MD5 and SHA-1
Password hashing schemes:
o Argon2 (by Biryukov, Dinu, Khovratovich; PHC winner)
o Catena (by Forler, Lucks, Wenzel; PHC candidate)
o Lanarea (by Mubarak; PHC candidate)
o Lyra and Lyra2 (by Simplicio Jr., Barreto, Almeida, Andrade; PHC candidate)
o Neoscrypt (by Doering)
o RIG (by Chang, Jati, Mishra, Sanadhya; PHC candidate)
o TwoCats (by Cox; PHC candidate)
> Yarn (by Capun; PHC candidate)
 Crypto tools by catid:
o Cymric ("portable secure random number generator")
o Snowshoe ("portable, secure, fast elliptic curve math library")
o Tabby ("strong, fast, and portable cryptographic signatures and handshakes")
« Sodium: BLAKEZ2D is the default hash function of this cryptography library based on NaCl
« Accumulus: BLAKEZ2s is used for producing unique keys of the data stored
» Archivarius 3000: BLAKEZ2s is used for deduplication in this desktop search system

« WolfSSL: WolfSSL includes BLAKE2b
» OpenSSL: OpenSSL includes BLAKE2b and BLAKEZ2s
» Wireguard: The Wireguard VPN uses BLAKEZ2s for hashing and as a MAC
« Botan: The Botan library includes BLAKE2b
e Crypto++: The Crypto++ library includes BLAKE2s and BLAKE2b
» Noise: The Noise protocol (now used in WhatsApp) uses BLAKEZ2s and BLAKEZ2b
» Cifra Extrema: Cifra Extrema products use several versions of BLAKEZ in its servers and satellite modules
» Bouncy Castle: Includes BLAKE2b-160, BLAKE2b-256, BLAKE2b-384, and BLAKE2b-512
» Peerio: BLAKEZ2s is used to generated IDs and for integrity checks
« 8th: BLAKEZ2s is the default hash in the 8th cross-platform development system
o librsync: BLAKE2D is the default hash un this popular remote delta-compression library
» checksum: BLAKEZ2s is one of the three hash functions supported with MD5 and SHA-1
» Password hashing schemes:
o Argon2 (by Biryukov, Dinu, Khovratovich; PHC winner)
o Catena (by Forler, Lucks, Wenzel; PHC candidate)
o Lanarea (by Mubarak; PHC candidate)
o Lyra and Lyra2 (by Simplicio Jr., Barreto, Almeida, Andrade; PHC candidate)
o Neoscrypt (by Doering)
o RIG (by Chang, Jati, Mishra, Sanadhya; PHC candidate)
o TwoCats (by Cox; PHC candidate)
> Yarn (by Capun; PHC candidate)
 Crypto tools by catid:
o Cymric ("portable secure random number generator")
o Snowshoe ("portable, secure, fast elliptic curve math library")
o Tabby ("strong, fast, and portable cryptographic signatures and handshakes")
« Sodium: BLAKEZ2D is the default hash function of this cryptography library based on NaCl
« Accumulus: BLAKEZ2s is used for producing unique keys of the data stored
» Archivarius 3000: BLAKEZ2s is used for deduplication in this desktop search system

« WolfSSL: WolfSSL includes BLAKE2b
» OpenSSL: OpenSSL includes BLAKE2b and BLAKEZ2s
» Wireguard: The Wireguard VPN uses BLAKEZ2s for hashing and as a MAC
« Botan: The Botan library includes BLAKE2b
e Crypto++: The Crypto++ library includes BLAKE2s and BLAKE2b
» Noise: The Noise protocol (now used in WhatsApp) uses BLAKEZ2s and BLAKEZ2b
» Cifra Extrema: Cifra Extrema products use several versions of BLAKEZ in its servers and satellite modules
« Bouncy Castle: Includes BLAKE2b-160, BLAKE2b-256, BLAKE2b-384, and BLAKE2b-512
» Peerio: BLAKEZ2s is used to generated IDs and for integrity checks
« 8th: BLAKEZ2s is the default hash in the 8th cross-platform development system
o librsync: BLAKE2D is the default hash un this popular remote delta-compression library
» checksum: BLAKEZ2s is one of the three hash functions supported with MD5 and SHA-1
» Password hashing schemes:
o Argon2 (by Biryukov, Dinu, Khovratovich; PHC winner)
o Catena (by Forler, Lucks, Wenzel; PHC candidate)
o Lanarea (by Mubarak; PHC candidate)
o Lyra and Lyra2 (by Simplicio Jr., Barreto, Almeida, Andrade; PHC candidate)
o Neoscrypt (by Doering)
o RIG (by Chang, Jati, Mishra, Sanadhya; PHC candidate)
o TwoCats (by Cox; PHC candidate)
> Yarn (by Capun; PHC candidate)
 Crypto tools by catid:
o Cymric ("portable secure random number generator")
o Snowshoe ("portable, secure, fast elliptic curve math library")
> Tabby ("strong, fast, and portable cryptographic signatures and handshakes")
« Sodium: BLAKE2D is the default hash function of this cryptography library based on NaCl
« Accumulus: BLAKEZ2s is used for producing unique keys of the data stored
» Archivarius 3000: BLAKEZ2s is used for deduplication in this desktop search system

FIPS PUB 202

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.FIPS.202

August 2015

2007

SHA-3 competition

BLAKE2 —| 2012

SHA-3 standard (FIPS 202) —]| 2015

n O This repository Pull requests Issues Marketplace Gist

- gvanas | KeccakCodePackage OWatch~ 35 uUnstar 174 YFork 60

<> Code Issues 1 Pull requests 1 Projects 0 Wiki Insights ~

Keccak Code Package

{ 172 commits ¥ 1 branch L 0 releases A2 15 contributors

Branch: master v New pull request Create new file Upload files Find file Clone or download ~

The Keccak, Keyak and Ketje Teams Added back missing headers in KangarooTwelve.c Latest commit 83f4063 14 days ago
i Build Added grouping of source packages 11 months ago
M CAESAR Updated to Ketje v2 5 months ago
M Common Use C89 comments rather than C++ comment style a year ago
M Constructions Added KangarooTwelve optimized implementation 10 months ago
M KeccakSum Fixed possible printf format string vulnerability 4 months ago
i Ketje uxth needs two parameters 3 months ago
M Modes Added back missing headers in KangarooTwelve.c 14 days ago
M PISnP Added more AVX-512 implementations 5 months ago
M SnP uxth needs two parameters 3 months ago

github.com/gvanas/KeccakCodePackage

http://github.com/gvanas/KeccakCodePackage

TweetFIPS202
@TweetFIPS202

& keccak.noekeon.org/tweetfips202.h...
Joined August 2015

Tweet to TweetFIPS202

L 12 Followers you know

W Il I
b -1 TAN

Tweets Followers

9 43

Tweets Tweets & replies

TweetFIPS202 @TweetFIPS202 - 17 Aug 2015 v
@ 5)jHishake128.21,1,168)H(shake256,17,1,136)H(sha3224,18,0,28)H(sha3256,17,
@ | 37)H(sha3384,13,0,48)H(sha3512,9,0,64)

9, 1 QO 1 &

TweetFIPS202 @TweetFIPS202 - 17 Aug 2015 v
o JA=L64(m+8");F(s);n-=r;m+=r;}FOR(i,Nt[]]=0;FOR(,n)t(il=m[i];t[i]=p;t[r-1]|=128;
<> FOR(i,r/8)s[i]*=L64(t+8");F(s);FOR(i,d)h[i]=s[i/8]>>8"(i%

O 1 D 1 &

TweetFIPS202 @TweetFIPS202 - 17 Aug 2015 o
. 1ULL<<((1<<y)-1);}}static void Keccak(u8 r,const u8*m,u64 n,u8 p,u8*h,u64
&)64 5[25),i:u8 t[{200]:FOR(i,25)s[l]=0:while(n>=r}{FOR(,r/8)s]i

9, 1 QO 1 &

TweetFIPS202 @TweetFIPS202 - 17 Aug 2015 v
' ROL(t,r%64);t=Y;}JFOR(y,5){FOR(x,5)B[x]=s[x+5"y];
> FOR(x,5)s[x+5"y]=B[x]*(~B[(x+1) %5]&B|[(x+2)%5]);}FOR(y,7)if(R=(R<<1)A113"
(R>>7))&2)"s"=

O 1 2 O 1 &

TweetFIPS202 @TweetFIPS202 - 17 Aug 2015 v
® 1FORK 5)it=BI(x+4)%5]AROL(B[(x+1)%5),1):FOR(y,5)s[x+5"y]A=t}t=s[1];
@ | _0:x=1:FOR(j,24){r+=j+1:Y=2"x+3"y:x=y:y=Y %5:Y=s[x+5"y]:S[x+5"y]=

& Translate from Spanish

Hash functions speed (MiBps)

947

BLAKE2b

SHA-1 9209

BLAKEZ2s

MD5

SHA-512

SHAKE-128

SHA-256

SHA3-256

SHA3-512

0 200 400 600 800 1000

Bit Security

it security of AES-128?
nit security of AES-2567

DIt security against
DIt security against
DIt security against

ore-image attacks of S
ore-image attacks of S
ore-image attacks of S

A-2567
A-5127
A-3-5127

FIPS PUB 202

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.FIPS.202

August 2015

The Keccak sponge function family

Guido Bertonil, Joan Daemen!/2, Michaél Peeters! and Gilles Van Asschel

1STMicroelectronics
2Radboud University

Tune Keccak to your requirements

The capacity parameter and chosen output length in Keccak can be freely chosen. Their combination determines the
attainable security and the capacity has an impact on performance. This page gives you the optimal capacity and
output length values, given the classical hash function criteria.

Required collision resistance: 2¥ Xx= 0(don'tcare) [

Required (second) preimage resistance: 2¥ y= 128 %]

The optimal choice of parameters is:

Keccak[r=1344,c=256] with a least 128 bits of output.

Security claim

In line with our hermetic sponge strategy, we make a flat sponge claim with ¢=256 bits of capacity: for any output

length, we claim this Keccak sponge function resists any attack up to 2128 gperations (each of complexity
equivalent to one call to Keccak-f), unless easier on a random oracle. For 128 bits of output specifically, this
translates into the following claimed security level:

Claimed security level
Collision resistance 264

(Second) preimage resistance 2128

Speed

keccak.noekeon.org/tune.html

e Flles

e Specifications summary

e Tune KECCAK to your
requirements

e Third-party cryptanalysis

e Qur papers and presentations

e Keccak Crunchy Crypto Collision
and Pre-image Contest

e The Keccak Team

Documents

e The FIPS 202 standard

e The KeCcak reference

e Files for the Keccax reference

e The Keccak SHA-3 submission

e KeECCAK implementation overview
e Cryptographic sponge functions
e all files...

et A

e Note on side-channel attacks and
their countermeasures

e Note on zero-sum distinguishers
of Kecoax-f

http://keccak.noekeon.org/tune.html

NIST Special Publication 800-185

SHA-3 Derived Functions:

cSHAKE, KMAC, TupleHash and ParallelHash

John Kelsey
Shu-jen Chang
Ray Perlner

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-185

COMPUTER SECURITY

BLAKE2 —

SHA-3 standard (FIPS 202) —
SP 800-185 —

2007

2012

2015
2016

SHA-3 competition

KMAC

TupleHash

ParallelHash

KMAC

message || SHA-256(message)

TupleHash

ParallelHash

KMAC

message || SHA-256(key||message)

TupleHash

ParallelHash

KMAC

message || more || SHA-256(key||message||more)

TupleHash

ParallelHash

KMAC

message || SHAKE(key || message)

TupleHash

ParallelHash

KMAC

message || SHAKE(key || message)

TupleHash

my RSA public key = (e, N)

ParallelHash

KMAC

message || SHAKE(key || message)

TupleHash

my RSA public key = (e, N)
fingerprint = SHA-256(e || N)

ParallelHash

KMAC
message || SHAKE (key || message)

TupleHash
e N

« > < >

fingerprint1 = SHA-256(1010110000000016001:%)

ParallelHash

KMAC

message || SHAKE (key || message)

TupleHash
<« € —><— N —>
fingerprintl = SHA-256(10101100000000160001:)

e N

< > < >

fingerprint2 = SHA-256(1010110000000010001:%)

ParallelHash

KMAC
message || SHAKE(key || message)
TupleHash
SHAKE(len(e) || e || len(N) [| N)

ParallelHash

message

&

>

absorbing

Sponge Construction

T

>

f

output

/

squeezing

Sponge Construction

message /o(utput
o 4. \ el gl
f f f
0 — > > >

absorbing squeezing

Sponge Construction

message /o(utput
o 4. \ el gl
f f f
0 — > > >

absorbing squeezing

Sponge Construction

message /o(utput
o 4. \ el gl
f f f
0 — > > >

absorbing squeezing

KMAC
message || SHAKE(key || message)
TupleHash
SHAKE(len(e) || e || len(N) [| N)
ParallelHash

SHAKE(SHAKE(b1) || SHAKE(b2) || SHAKE(b3) || ...)

2007

SHA-3 competition

BLAKE2 —| 2012

SHA-3 /| SHAKE —| 2015
TupleHash / ParallelHash / KMAC —| 2016

Keyak and Ketje

Cryptographic competitions

Introduction

Secret-key cryptography
Disasters

Features

Focused competitions:
AES

eSTREAM

SHA-3

PHC

CAESAR

Broader evaluations:
CRYPTREC
NESSIE

CAESAR details:
Submissions

Call for submissions

Call draft 5

Call draft 4

Call draft 3

Call draft 2

Call draft 1

Committee

Frequently asked questions

CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness

Timeline

« M-20, 2012.07.05-06: DIAC: Directions in Authenticated Ciphers. Stockholm.

« M-14, 2013.01.15: Competition announced at the Early Symmetric Crypto workshop in Mondorf-les-Bains; also announced online.
« M-7,2013.08.11-13: DIAC 2013: Directions in Authenticated Ciphers 2013. Chicago.

« MO, 2014.03.15: Deadline for first-round submissions.

« M2, 2014.05.15: Deadline for first-round software.

« M5, 2014.08.23-24: DIAC 2014: Directions in Authenticated Ciphers 2014. Santa Barbara.
« M16, 2015.07.07: Announcement of second-round candidates.

« M17, 2015.08.29: Deadline for second-round tweaks.

« M18, 2015.09.15: Deadline for second-round software.

« M18, 2015.09.28-29: DIAC 2015: Directions in Authenticated Ciphers 2015. Singapore.
« M27, 2016.06.30: Deadline for Verilog/VHDL.

« M29, 2016.08.15: Announcement of third-round candidates.

« M30, 2016.09.15: Deadline for third-round tweaks.

« M30, 2016.09.26-27: DIAC 2016. Nagoya, Japan.

« M31, 2016.10.15: Deadline for third-round software.

« TBA: Deadline for third-round Verilog/VHDL.

« TBA: Announcement of finalists.

« TBA: Deadline for finalist tweaks.

« TBA: Deadline for finalist software.

« TBA: Deadline for finalist Verilog/VHDL.

« 2017 summer (tentative): DIAC 2017.

« M45 (tentative), 2017.12.15: Announcement of final portfolio.

Version: This is version 2016.08.15 of the caesar himl web page.

2007

SHA-3 competition

BLAKE2 —| 2012

SHA-3 /| SHAKE —| 2015
TupleHash / ParallelHash / KMAC — | 2016

KangarooTwelve
& MarsupilamiFourteen

KangarooTwelve
ParallelHash128
ParallelHash256
SHA-1

SHA-512
SHAKE128
SHA-256
SHAKE256

SHA3-512

500 1000 1500 2000
Speed (MiB/s) on Skylake @ 3.2GHz

2500

3000

2007

SHA-3 competition

BLAKE2 —| 2012

SHA-3 /| SHAKE —| 2015
TupleHash / ParallelHash / KMAC — | 2016

KangarooTwelve
& MarsupilamiFourteen

n O This repository Pull requests Issues Marketplace Gist

- gvanas | KeccakCodePackage OWatch~ 35 uUnstar 174 YFork 60

<> Code Issues 1 Pull requests 1 Projects 0 Wiki Insights ~

Keccak Code Package

{ 172 commits ¥ 1 branch L 0 releases A2 15 contributors

Branch: master v New pull request Create new file Upload files Find file Clone or download ~

The Keccak, Keyak and Ketje Teams Added back missing headers in KangarooTwelve.c Latest commit 83f4063 14 days ago
i Build Added grouping of source packages 11 months ago
M CAESAR Updated to Ketje v2 5 months ago
M Common Use C89 comments rather than C++ comment style a year ago
M Constructions Added KangarooTwelve optimized implementation 10 months ago
M KeccakSum Fixed possible printf format string vulnerability 4 months ago
i Ketje uxth needs two parameters 3 months ago
M Modes Added back missing headers in KangarooTwelve.c 14 days ago
M PISnP Added more AVX-512 implementations 5 months ago
M SnP uxth needs two parameters 3 months ago

github.com/gvanas/KeccakCodePackage

http://github.com/gvanas/KeccakCodePackage

Part ll: Strobe

message

&

>

absorbing

Sponge Construction

T

>

f

output

/

squeezing

Duplex Construction

Input output input output Input output

init duplexing duplexing duplexing

Symmetric Protocol

myProtocol = Strobe_init(“myWebsite.com™)
myProtocol.KEY(sharedSecret)
ouffer += myProtocol.send _ENC(“GET /)
ouffer += myProtocol.send MAC(len=16)
// send the buffer
/] receive a ciphertext
message = myProtocol.recv_ENC(ciphertext[:-16])
ok = myProtocol.recv_MAC(ciphertext[-16:])
i1f lok {
/| reset the connection

¥

Operation Flags

AD

KEY

PRF

send CLR
recv_ CLR
send ENC
recv_ ENC
send MAC
recv_ MAC

RATCHET

A
AC
IAC
A T
IA T
ACT
IACT
CT
I CT
C

internal operations

default
state = Input ® state

chefore
state = input
cafter
output, state = input ® state

forceF
the permutation is ran before the operation

operation = KEY

operation = KEY

operation = KEY
data=010100...

operation = KEY
data=010100...

operation =send_ENC

data = hello
l ciphertext

operation = AD

data=010100...

D
P

operation = AD operation = send_MAC
data=010100... tag

A

len =16

D
P
P

operation =send_CLR

data=010100...

D
P

operation =send_CLR operation = RATCHET

data=010100... data =00000
4 3 x I

Hash Function

myHash = Strobe_init(“hash™)
myHash.AD(“something to be hashed™)
hash = myHash.PRF(outputLen=16)

Key Derivation Function

KDF = Strobe_init(“deriving keys™)
KDF .KEY(keyExchangeOutput)

keys = KDF.PRF(outputLen=32)

keyl = keys[:16]
key2 = keys[16:

STROBE protocol framework

overview specification example protocols code papers

Version and changelog

This is version 1.0.2 of the STROBE specification. The software is in alpha.

e January 24, 2017: version 1.0.2. Fix the length of S in the cSHAKE domain separation string.
Hopefully the last change for this silly reason.

e January 6, 2017: version 1.0.1. Adjust, hopefully, to the final version of the NIST cSHAKE
standard. The difference is how the empty personalization string is encoded, and in the order
of the N and S strings. The draft was ambiguous, but N followed s and the empty string was
probably best interpreted as [0]. The final version changed it to [1, 0] with N preceding S.
I'm still not sure | got it right because there are no test vectors.

¢ January 3, 2017: version 1.0.0.

Goals

The Internet of Things (loT) promises ubiquitous, cheap, connected devices. Unfortunately, most
of these devices are hastily developed and will never receive code updates. Part of the loT's
security problem is cryptographic, but established cryptographic solutions seem too heavy or too
inflexible to adapt to new use cases.

STROBE is a new framework for cryptographic protocols. It can also be used for regular
encryption. Its goals are to make cryptographic protocols much simpler to develop, deploy and

strobe.sourceforge.io

https://strobe.sourceforge.io/

Part lll; Disco?

hle:G

Noise + Strobe = Disco

ithub.com/mimoo/NoiseGo/disco/specification.md

https://github.com/mimoo/NoiseGo/blob/master/disco/specification.md

chyptologie.net

,twitter.com/lyonOl david

