

Power & Automation in brief

Substation Automation & Protection Systems 7

industries:

Power Generation, Power Transmission and Distribution, Water, Oil & Gas, Steel, Food & Beverages, Chemicals 4

offices:

Bucharest, Resita, Saudi Arabia (Al Jubail) and Australia (Melbourne) 40

Projects

on SCADA and control, for power generation, power T&D, steel and diary industries 50%

Of revenue

From international projects

Process Control & Electrical Automation

3.500+

IEDs

integrated and monitored through our solutions

3

EMS-SCADA Dispatch Centers

Designed and implemented by ENVO Group

500.000+

Data collection points

aggregated

100+

Equipment providers

Integrated in ENEVO's dispatch and automation solutions

What is different

What is different?

Corporate IT	Automation Systems IT
Not life threatening	Safety first
Availability important	Non-interruption is critical
Transactional orientation	Real-time focus
IBM, SAP, Oracle,	ABB, Emerson, GE, Honeywell, Siemens
People ~= Devices	Few people; Many, many devices
PCs and Servers	Sensors, Controllers, Servers
Web services model is dominant	Polled automation control model
MS Windows is dominant OS	Vendor-embedded operating systems
Many commercial software products installed on each PC	Purpose-specific devices and application
Protocol is primarily HTTP/HTTPS over TCP/IP widely known	Many industrial protocols, some over TCP/IP – vendor and sector- specific
Office environment, plus mobile	Harsh operating plant environments
Cross-industry IT jargon	Industry sector-specific jargon
Cross-industry regulations (mostly)	Industry-specific regulations

What is different?

- 25 year lifespan
- Technological freeze
- As-built
- Shutdown periods
- AIC not CIA

Information Technology – Operational Technology Convergence, Opportunities and Challenges

IT – OT Convergence

Advantages of modern technology

- Standardized Hardware and Software
- Greater Interoperability through Standardization
- Cost Reduction
- Higher Availability
- Increased Speed
- Faster Deployment
- Easier Troubleshooting

Challenges

- Disrupting Innovation (IT) vs Predictable Stability (OT)
- Different Mindsets
- Knowledge gap in IT/OT environment
- Market Pressure
- Increased Complexity & Interdependencies
- Closed Systems
- Cybersecurity
 - IT: Confidentiality, Integrity, Availability
 - OT: Availability, Integrity, Confidentiality, Traceability

Key elements

Sensor & Command Elements

- Sensors measure various physical units and convert them to either analog or digital values
- Command Elements are the mechanism by which a control system acts upon an environment

Features:

- PLC: Programmable Logic Controller
- Reads data from the field and sends it upstream for processing
- Executes control logic

Cybersecurity:

- Limit data flows
- Monitor network traffic
- Disable unused services

Features:

- RTU: Remote Terminal Unit
- Intermediary data storage
- Protocol translation
- Limited logic

Cybersecurity:

- Limit data flows
- Monitor network traffic
- Disable unused services

Process Servers, Historians & Computers

Features:

- Regular x86 server/computer running dedicated software
- Uses "off-the shelf" OS & 3rd party applications
- Used for long-time storage of data
- Source for consolidated reporting

Cybersecurity:

- Advanced Anti-Virus software with correct configurations
- Application White-Listing
- Centralized policy and user management
- Disable logical and physical access
- Disable administrative rights (when possible)
- Disable unused OS services

HMI – Human to Machine Interface

- Dedicated Software
- Overview of industrial process
- Visualization and alarming

Switches

Features:

- Network access and aggregation
- First security barrier
- First level of redundancy
- First level for QoS

Cybersecurity:

- Shutdown unused ports
- Blackhole VLAN
- Port security
- ARP inspection
- Control Plane security
- Authenticated (and encrypted) control plane protocols
- Local and remote port mirroring

Routers

- Features:
 - Encrypted transport between remote locations
 - Redundancy between remote locations
- Cybersecurity:
 - Shutdown unused ports
 - Blackhole VLAN
 - Port security
 - ARP inspection
 - Control Plane security
 - Authenticated (and encrypted) control plane protocols

Firewalls

- Roles:
 - Network segmentation
 - Enforcing communication flows
 - In-line or passive network monitoring
 - Industrial protocols inspection
- MUST HAVE:
 - UTM, not L4
 - SCADA protocols filtering, including commands
 - Restrictive traffic flows
 - IDS/IPS "near" data path
 - Log all network traffic

Protocols

Modbus:

- Developed by Modicon (now Scheider Electric)
- Serial or TCP
- Authentication based on Layer 3 (Network)
- Master-Slave
- Address approach

IEC-101/104:

- European Standard
- IEC-101 over Serial
- IEC-104 over TCP

DNP3:

- US Standard
- Serial or TCP
- Timestamps
- Event driven
- Server-Client
- Unsolicited messages

IEC-61850:

- European standard
- Used more often in substation environments
- Object approach

ENEVO

Threat Evolution

Case 1: Stuxnet - 2010

- Where: Iran
- Target system:
 - Natanz Uranium Enrichment Facility
 - Siemens S7-315 CPU with 6 CP-342-2 modules connected to 31 Vacon or Fararo Paya frequency converters per module
- Attack vector: infected USB key from one of the 5 subcontractors involved in Industrial processing
- Impact: IAEA (International Atomic Energy Agency) reported 1000 centrifuges withdrawn from service
- Key facts:
 - first confirmed example of ICS tailored malware
 - detailed understanding of the industrial process
 - no direct access to the facility (isolated network)
 - infect organizations that interact with target (pivoting attack)
 - modifies and hides code on Siemens PLCs

Case 2: Dragonfly/HAVEX - 2013

- Where: U.S. and Europe
- Target system:
 - power grid and petrochemical asset owners
 - devices on TCP ports 44818 (Omron, Rockwell Automation), 102 (Siemens) and 502 (Schneider Electric)
- Attack vector: vendor websites and spear phishing in the form of e-mails with PDF attachments
- Impact: > 2,000 sites (1,000 energy companies in 84 countries)
- Key facts:
 - leveraged legitimate functionality in the OPC protocol to map out industrial devices
 - no physical disruption or destruction of the industrial process

Case 3: Sandworm/Blackenergy 2 - 2014

- Where: U.S. and Europe
- Target system:
 - power generation site owners / operators
 - large suppliers and manufacturers of heavy power related materials
 - HMI applications including:
 - Siemens SIMATIC WinCC (V7.0, V7.2, V7.3) PCS 7 (V7.1, V8.0, V8.1), TIA Portal V13
 - GE CIMPLICITY Version 8.2 with SIM 23 and prior
 - Advantech WebAccess
- Attack vector: phishing campaign/ known or 0-day vulnerability in Microsoft Windows
- Impact: multiple systems of NATO, European Union, and energy sectors
- Key facts:
 - Advanced Persistent Threat Toolkit to develop modular malware;
 - capabilities to attack ARM and MIPS platforms, scripts for Cisco network devices, destructive plugins, certificate stealer and more

Case 4: Blackenergy 3 - 2015

- Where: Ukraine
- Target system: 3 regional distribution power companies
- Attack vector: spear-phishing
- Impact:
 - 7 x 110 kV and 23 x 35 kV substations disconnected from the grid
 - 225,000+ customers without power for ~6 hours
- Key facts:
 - first known instance where a cyber-attack had disrupted electric grid operations
 - destruction of serial-to-Ethernet devices through malicious firmware updates
 - lost the ability for automated control, for upwards of a year in some locations
 - leveraged the grids systems against itself

Case 5: Crashoverride - 2016

- Where: Ukraine
- Target system:
 - 330 kW transmission substation in Kiev owned by Ukrenergo
 - Siemens SIPROTEC 4 and SIPROTEC Compact
- Attack vector: unknown for now
- Impact:
 - 200 MW of capacity
 - ~1/5 of the capital's energy consumption at night
 - black out a portion of Ukrainian capital for ~1hour
- Key facts:
 - modular framework dedicated for ICS
 - first ever known malware specifically designed to attack electrical grids
 - appears more of a proof of concept than what is the full capability of the malware

Where are we now and what to do

Weaknesses and Gaps - Vulnerabilities

- → Lack of awareness and training among employees
- → Lack of proper network segmentation
- Lack of network access control
- → IT firewalls, not OT firewalls
- → Blurry lines between IT and OT boundary
- → Default accounts and/or generic accounts
- Legacy and/or unpatched systems
- → Challenges in infrastructure update/upgrade
- → Lack of visibility

Securing IT&OT: Step-by-step

Improvement proposal – IT & OT

IED

- Monitor and restrict network traffic
- Disable unused SCADA protocols
- Manage administrative access
- Configure logging

Process Server & Computer

- Advanced Anti-Virus software with correct configuration
- Application Inventory
- Application Whitelisting
- Establish running processes baseline
- Centralized policy and user management
- Manage logical and physical access
- Manage Administrative Rights
- Disable unused services

Switches, Routers

- Shutdown unused ports
- · Blackhole VLAN
- Port security
- ARP inspection
- Control Plane security
- · Limit MAC flows
- Local and remote port mirroring

Firewall

- · UTM, not L4
- SCADA protocols filtering, including commands
- Restrictive traffic flows using least privilege principle
- · IDS/IPS "near" data path
- Log all network traffic

Insight

- Define log sources and information types
- Intercept, store and analyze network traffic
- Store all logs
- Correlate all information using SIEM software
- Consider non IT/OT information sources

Industrial cybersecurity – our vision

- Security is a mindset, not a magic wand!
 - Physical
 - Architecture
 - Hardware
 - Software
 - Insight
 - Operational & Procedural

Education

Education is important

Education map

In the context of Cyber Security Month campaign, ENISA and NIS Platform WG3 partners are pleased to announce the establishment of a database with a list of available courses and certification programmes linked to Network and Information Security. The webpage allows educational institutions representatives to ADD to the map courses, programmes and trainings. NB: The information encoded via the web form is 1.pending for approval; 2.published on the website. In order to modify the information at any stage, please send an email: subject "NIS Universities map" stakeholderrelations[at]enisa.europa.eu . Please note that the database is not an exhaustive list and the intention is to have it yearly updated.

Add Course

Belgium 31 Courses, 22 Disciplines

Czech Republic 46 Courses, 28 Disciplines

Germany 148 Courses, 41 Disciplines

Spain 18 Courses, 6 Disciplines

France 31 Courses, 15 Disciplines

United Kingdom 92 Courses, 12 Disciplines

Italy 14 Courses, 6 Disciplines

Netherlands 21 Courses, 12 Disciplines

Norway 30 Courses, 2 Disciplines

Romania 4 Courses, 4 Disciplines

(*) ENISA - European Union Agency for Network and Information Security

Thank you for your attention!

Romania Office

Address: 16 Negustori Street

Bucharest, Romania

Phone: +40 371 017 242

Fax: +40 372 258 353

Email: romania@enevogroup.com

Saudi Arabia Office

Address: Al Jubail 31961, Support

Industrial Zone,

Kingdom of Saudi Arabia

Phone: +966 013-3408324

Fax: +966 013-3408322

Email: ksa@enevogroup.com

Australia Office

Address: Level 2, 172-192 Flinders

Street, Melbourne, Australia

Phone: +61 414 384 430

Email: australia@enevogroup.com

