
© 2017 SEC Consult | All rights reserved

©
 f
o

to
li
a

4
1

7
0

6
5

3
0

Fuzzing closed source applications

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• René Freingruber (r.freingruber@sec-consult.com)

• Twitter: @ReneFreingruber

• Security Consultant at SEC Consult

• Reverse Engineering, Exploit development, Fuzzing

• Trainer at SEC Consult

• Secure Coding in C/C++, Reverse Engineering

• Red Teaming, Windows Security

• Speaker at conferences:

• CanSecWest, DeepSec, 31C3, Hacktivity, BSides Vienna, Ruxcon, ToorCon,

NorthSec, IT-SeCX, QuBit, DSS ITSEC, ZeroNights, Owasp Chapter, …

• Topics: EMET, Application Whitelisting, Hacking Kerio Firewalls, Fuzzing Mimikatz, …

Introduction

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

mailto:r.freingruber@sec-consult.com

© 2017 SEC Consult | All rights reserved

Vienna (HQ) | AT

Wiener Neustadt | AT

Vilnius | LT

Berlin| DE
Montreal | CA

Singapore | SG

Moscow | RU

Zurich | CH

ADVISOR FOR YOUR INFORMATION SECURITY

SEC Consult Offices

SEC Consult Clients

Bangkok | TH

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

Founded 2002

Leading in IT-Security Services and

Consulting

Strong customer base in Europe and Asia

70+ Security experts

400+ Security audits per year

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Feedback-based Fuzzing

© 2017 SEC Consult | All rights reserved

 Consider this pseudocode

Feedback based fuzzing

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

 Input „command\n“results in the orange code-coverage output

Feedback based fuzzing

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

 Same for „command\nsubcommand\n“

Feedback based fuzzing

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

 And so on…

Feedback based fuzzing

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm  AFL)

Methods to measure code-coverage

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• One of the most famous file-format fuzzers

• Developed by Michal Zalewski

• Instruments application during compile time (GCC or LLVM)

• Binary-only targets can be emulated / instrumented with qemu

• Forks exist for PIN, DynamoRio, DynInst, syzygy, IntelPT, …

• Simple to use!

• Good designed! (very fast & good heuristics)

• Strategy:

1. Start with a small min-set of input sample files

2. Mutate “random” input file from queue like a dumb fuzzer

3. If mutated file reaches new path(s), add it to queue

American Fuzzy Lop - AFL

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Just use afl-gcc instead of gcc…

Feedback based fuzzing

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Basic Blocks:

Feedback based fuzzing

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Result:

Feedback based fuzzing

Store old

register values

Instrumentation

Restore old

register values

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Instrumentation tracks edge coverage, injected code at every basic block:

 AFL can distinguish between

• A->B->C->D->E (tuples: AB, BC, CD, DE)

• A->B->D->C->E (tuples: AB, BD, DC, CE)

American Fuzzy Lop - AFL

cur_location = <compile_time_random_value>;

bitmap[(cur_location ^ prev_location) % BITMAP_SIZE]++;

prev_location = cur_location >> 1;

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Instrumentation tracks edge coverage, injected code at every basic block:

 AFL can distinguish between

• A->B->C->D->E (tuples: AB, BC, CD, DE)

• A->B->D->C->E (tuples: AB, BD, DC, CE)

 Without shifting A->B and B->A are indistinguishable

American Fuzzy Lop - AFL

cur_location = <compile_time_random_value>;

bitmap[(cur_location ^ prev_location) % BITMAP_SIZE]++;

prev_location = cur_location >> 1;

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

Source:

http://lcamtuf.coredump.cx/afl_

gzip.png

Without instrumentation just the

first level will be discovered (or it

would take an extremely long time)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• We can either start fuzzing with an empty input folder or with downloaded /

generated input files

• Empty file:
• Let AFL identify the complete format (unknown target binaries)

• Can be very slow

• Downloaded sample files:
• Much faster because AFL doesn‘t have to find the file format structure itself

• Bing API to crawl the web (Hint: Don‘t use DNS of your provider …)

• Other good sources: Unit-tests, bug report pages, …

• Problem: Many sample files execute the same code  Corpus Distillation

Corpus Distillation

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Steps for fuzzing with AFL:

1. Remove input files with same functinality:
Hint: Call it after tmin again (cmin is a heuristic)
./afl-cmin –i testcase_dir –o testcase_out_dir

/path/to/tested/program [...program's cmdline...]

2. Reduce file size of input files:
./afl-tmin –i testcase_file –o testcase_out_file

/path/to/tested/program [...program's cmdline...]

3. Start fuzzing:
./afl-fuzz -i testcase_dir -o findings_dir /path/to/tested/program

[...program's cmdline...] @@

American Fuzzy Lop - AFL

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• AFL input with invalid 4xm file (strk chunk changed to strj)

• AFL still finds the vulnerability!

• Level 1 identifies correct “strk” chunk

• Level 2 based on level 1 output AFL finds the vulnerability (triggered by 0xffffffff)

AFL with CVE-2009-0385 (FFMPEG)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

LibFuzzer

• LibFuzzer – Similar concept to AFL but in-memory fuzzing

• Requires LLVM SanitizerCoverage + writing small fuzzer-functions

• LibFuzzer is more the Fuzzer for developers

• AFL fuzzes the execution path of a binary (no modification required)

• LibFuzzer fuzzes the execution path of a specific function (minimal
code modifications required)

• Fuzz function1 which processes data format 1  Corpus 1

• Fuzz function2 which processes data format 2  Corpus 2

• AFL can be also do in-memory fuzzing (persistent mode)

• Highly recommended tutorial: http://tutorial.libfuzzer.info

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

http://tutorial.libfuzzer.info/

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm  AFL)

2. Emulation of binary (e.g. with qemu)

Methods to measure code-coverage

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm  AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

Methods to measure code-coverage

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm  AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

4. Dynamic instrumentation of compiled application (no source code required;

tools: DynamoRio, PIN, Valgrind, Frida, …)

Methods to measure code-coverage

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Dynamic runtime manipulation of instructions of a running application!

• Many default tools are shipped with these frameworks

• drrun.exe –t drcov -- calc.exe

• drrun.exe –t my_tool.dll -- calc.exe

• pin -t inscount.so -- /bin/ls

• Register callbacks, which are trigger at specific events

• new basic block / instruction

• load of module, exit of process, …

• At callback (e.g. new basic block), we can further add instructions

• Transformation time (Instrumentation Function): Analyzing a BB the first time (called once)

• Execution time (Analysis Function): Executed always before instruction gets executed

Dynamic Instrumentation Frameworks

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

DynamoRIO

Source: The DynamoRIO Dynamic Tool Platform, Derek Bruening, Google

Transformation time

Execution time

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Example: Start Adobe Reader, load PDF file, exit Adobe Reader, extract coverage data
(Processing 25 PDFs with one single CPU core)

• Runtime without DynamoRio: ~30-40 seconds

• BasicBlock coverage (no hit count): 105 seconds
• Instrumentation only during transformation into code cache (transformation time)

• BasicBlock coverage (hit count): 165 seconds
• Instrumentation on basic block level (execution time)

• Edge coverage (hit count): 246 seconds

• Instrumentation on basic block level (many instructions required to save and
restore required registers for instrumentation code) (execution time)

DynamoRIO

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• PIN is another dynamic instrumentation framework (older)

• Currently more people use PIN ( more examples are available)

• DynamoRio is noticeable faster than PIN

• But PIN is more reliable

• DynamoRio can’t start Encase Imager, PIN can

• DynamoRio can’t start CS GO, PIN can

• During client writing I noticed several strange behaviors of DynamoRio

DynamoRio vs PIN

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• WinAFL - AFL for Windows

• Download: https://github.com/ivanfratric/winafl

• Developed by Ivan Fratric

• Two modes:

• DynamoRio: Source code not required

• Syzygy: Source code required

• Alternative: You can easily modify WinAFL to use PIN on Windows

• Windows does not use COW (Copy-on-Write) and therefore fork-like mechanisms are not
efficient on Windows!

• On Linux AFL heavily uses a fork-server

• On Windows WinAFL heavily uses in-memory fuzzing

WinAFL

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

https://github.com/ivanfratric/winafl

© 2017 SEC Consult | All rights reserved

WinAFL

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

Source: https://github.com/ivanfratric/winafl FAQ

https://github.com/ivanfratric/winafl

© 2017 SEC Consult | All rights reserved

GUI Applications

WinAFL

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

Source: https://github.com/ivanfratric/winafl FAQ

AutoIt can easily solve this problem

DynamoRio / PIN to change instruction ptr

https://github.com/ivanfratric/winafl

© 2017 SEC Consult | All rights reserved

AutoIt

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Another use case: Popup Killer

• During fuzzing applications often spawn error message; popup killer closes them

• Another implementation can be found in CERT Basic Fuzzing Framework (BFF)

Windows Setup files (C++ code to monitor for message box events)

AutoIt

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm  AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

4. Dynamic instrumentation of compiled application (no source code required;

tools: DynamoRio, PIN, Valgrind, Frida, …)

5. Static instrumentation via static binary rewriting (Talos fork of AFL which uses

DynInst framework – AFL-dyninst, should be fastest possibility if source code is

not available but it’s not 100% reliable and currently Linux only); WinAFL in

syzygy mode is very useful on Windows if source-code is available!

Methods to measure code-coverage

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm  AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

4. Dynamic instrumentation of compiled application (no source code required;

tools: DynamoRio, PIN, Valgrind, Frida, …)

5. Static instrumentation via static binary rewriting (Talos fork of AFL which uses

DynInst framework – AFL-dyninst, should be fastest possibility if source code is

not available but it’s not 100% reliable and currently Linux only); WinAFL in

syzygy mode is very useful on Windows if source-code is available!

6. Use of hardware features

• IntelPT (Processor Tracing); available since 6th Intel-Core generation (~2015)

• WindowsIntelPT (from Talos) or kAFL

Methods to measure code-coverage

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Areas which influent fuzzer results

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer

Results

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Overview: Areas which influence fuzzing results

Input filesize

MutatorsDetection rate

Fuzzer speed

Fork-server

Faster instrumentation code

Static vs. Dynamic

Instrumentation

In-memory fuzzing

No process switches

…

Page heap / Heap libs

Sanitizers (ASAN, MSAN,

SyzyASan, DrMemory, ..)

Dangling Pointer Check

Writeable Format Strings Check

…

AFL-tmin & AFL-cmin

Heat maps via

Taint Analysis and

Shadow Memory

…

Application aware mutators

Generated dictionaries

Append vs. Modify mode

Grammar-based mutators

Use of feedback from application

…

Fuzzer

Results

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer speed

Fuzzer

Results

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzer Speed

1. Fork Server

2. Deferred Fork Server

3. Persistent Mode (in-memory fuzzing)

4. Prevent process switches (between target application and the Fuzzer) by injecting the Fuzzer
code into the target process

5. Modify the input in-memory instead of on-disk

6. Use a RAM Disk

7. Remove slow API calls

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

GUI automation – Example HashCalc

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

Question 1:

What is the maximum MD5

fuzzing speed with GUI

automation?

Question 2:

How many MD5 hashes can

you calculate on a CPU per

second?

© 2017 SEC Consult | All rights reserved

• HashCalc.exe MD5 fuzzing

• GUI automation with AutoIt: ~3 exec / sec

• In-Memory with debugger: ~750 exec / sec

• In-Memory with DynamoRio (no instr.): ~200 000 exec / sec

GUI automation

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• How to find the target function without source code?

1. Measure code coverage (drrun –t drcov) in two program invocations, one should
trigger the function, one not. Then substract both traces (IDA Pro lighthouse)

2. Log all calls and returns together with register and stack values to a logfile. Then
search for the correct input / output combination (IDA Pro funcap or a simple
DynamoRio / PIN tool)

3. Place memory breakpoints on the input

4. Use a taint engine (see later)

WinAFL

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Input filesize

Fuzzer

Results

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Input file size

• The input file size is extremely important!

• Smaller files

• Have a higher likelihood to change the correct bit / byte during fuzzing

• Are faster processed by deterministic fuzzing

• Are faster loaded by the target application

• AFL ships with two utilities

• AFL-cmin: Reduce number of files with same functionality

• AFL-tmin: Reduce file size of an input file

• Uses a “fuzzer” approach and heuristics

• Runtime depends on file size

• Problems with file offsets

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Input file size

• Example: Fuzzing mimikatz

• Initial memory dump: 27 004 528 Byte

• Memory dump which I fuzzed: 2 234 Byte

 I’m approximately 12 000 times faster with this setup…

• You would need 12 000 CPU cores to get the same result in the same time as my

fuzzing setup with one CPU core

• Or with the same number of CPU cores you need 12 000 days (~33 years) to get the

same result as I within one day

• In reality it’s even worse, since you have to do everything again for every queue entry

(exponential)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Heat map of the memory dump (mimikatz access)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Heat map of the memory dump (mimikatz access) - Zoomed

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzing and exploiting mimikatz

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

See below link for in-depth discussion how I fuzzed mimikatz with WinAFL:

https://www.sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-

heatmaps-0day/index.html

https://www.sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-heatmaps-0day/index.html

© 2017 SEC Consult | All rights reserved

Creation of heatmaps

• For mimikatz I used a WinAppDbg script to extract file access information

• Very slow approach because of the Debugger

• Can’t follow all memory copies  Hitcounts are not 100% correct

• Better approach: Use dynamic instrumentation / emulation

• libdft

• Triton

• Panda

• Manticore

• Own PIN / DynamoRio tool

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Combine Call-Graph with Taint-Analysis

We can write a DynamoRio/PIN tool which tracks calls and taint status

Automatically detect target fuzz function

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

func1
func1

func4func2

func6 func7 func8 func9
access

access

access

access

access

access

func5

func3

Target

Function

to fuzz

_start

© 2017 SEC Consult | All rights reserved

Fuzzing with taint analysis

1. Typically byte-modifications are uniform distributed over the input file

2. With taint analysis we can distribute it uniform over the tainted instructions!

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

Input file

(5 byte)

Byte 1

Byte 2

Byte 3

Byte 4

20 Mutations

20 Mutations

20 Mutations

20 Mutations

Instruction X1: Read byte 2

Instruction X2: Read byte 1,2,3,4

Instruction X3: Read byte 2

Instruction X4: Read byte 1,2

Instruction X5: Read byte 2,3

Byte 1 read by 2 instructions

Byte 2 read by 5 instructions

Byte 3 read by 2 instructions

Byte 4 read by 1 instruction

Byte 5 read by 0 instructions

2/10 = 20%

5/10 = 50%

2/10 = 20%

1/10 = 10%

0/10 = 0%

20 Mutations

50 Mutations

20 Mutations

10 Mutations

Maybe don‘t fuzz this at all

X2 is maybe a

copy / search function

If this sets EFLAGS and can change

a cc jump, it should give an extra boost…

Byte 5
0 Mutations20 Mutations

© 2017 SEC Consult | All rights reserved

The power of dynamic instrumentation frameworks

 Automatically detect target fuzz function

 Taint engine can be used on first fuzz iteration  All writes can be logged with the address to

revert the memory state for new fuzz iterations

 Enable taint engine logging only for new code coverage  Automatically detect which bytes make

the new input unique and focus on fuzzing them!

 Call-instruction logging can be used to find interesting functions

• Malloc / Free functions (to automatically change to own heap implementation)

• Own heap allocator can free all chunks allocated in a fuzz iteration  No mem leaks

• Better vulnerability detection (see later slides)

• Compare functions  Return the comparison value to the fuzzer

• Checksum functions  Automatically “remove” checksum code

• Error-handling functions

 Focus fuzzing on promising bytes

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Mutators

Fuzzer

Results

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Detection rate

Fuzzer

Results

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Page (4096 byte), read- & write-able

Heap Overflow Detection

Heap Data 1
Meta

Data
Heap Data 2

Meta

Data

Heap Overflow

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Page (4096 byte), read- & write-able

Heap Overflow Detection

Heap Data 1
Meta

Data

Heap Overflow

Page (4096 byte)

NOT read- & write-able

Page (4096 byte), read- & write-able

Heap Data 2
Meta

Data

Page (4096 byte)

NOT read- & write-able

Unused (special pattern)

Unused (special pattern)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Page (4096 byte), read- & write-able

Use-After-Free Detection

Heap Data 1
Meta

Data

FREE

Page (4096 byte)

NOT read- & write-able

Unused (special pattern)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Page (4096 byte)

NOT read- & write-able

Use-After-Free Detection

Access attempt

Page (4096 byte)

NOT read- & write-able

Heap Data 1
Meta

Data

Access attempt

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Libdislocator (shipped with AFL)

• https://github.com/DhavalKapil/libdheap

• AFL_HARDEN=1 make (Fortify Source & Stack Cookies)

• On Windows: Page heap with Application Verifier

• Own heap allocator which checks after free() all memory locations for a dangling

pointer!

• Detect Use-After-Free at free and not at use step

• Concept similar to MemGC protection from Edge

Heap Library

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

https://github.com/DhavalKapil/libdheap

© 2017 SEC Consult | All rights reserved

• LLVM has many useful sanitizers!

• Address-Sanitizer (ASAN)

• -fsanitize=address

• Out-of-bounds access (Heap, stack, globals), Use-After-Free, …

• Memory-Sanitizer (MSAN)

• -fsanitize=memory

• Uninitialized memory use

• UndefinedBehaviorSanitizer (UBSAN)

• -fsanitize=undefined

• Catch undefined behavior (Misaligned pointer, signed integer overflow, …)

• DrMemory (based on DynamoRio) if source code is not available

 Use sanitizers during development !!!

Detecting not crashing vulnerabilities

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• During corpus generation don’t use sanitizers  performance

• After we have a good corpus, start fuzzing it with sanitizers / injected libraries

• I prefer heap libraries because they are faster and run after the first fuzzing

session the corpus against binaries with sanitizers for some days

• I don’t use heap libraries for the master fuzzer (deterministic fuzzing must be fast)

• AFL performance example; one core; no in-memory fuzzing:

• x64 binary: 1400 exec / sec

• x86 binary: 1200 exec / sec

• x86 hardened binary: 1150 exec / sec

• x86 hardened binary + libdislocator: 600 exec / sec

• x86 binary with Address Sanitizer: 200 exec / sec

Detecting not crashing vulnerabilities

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Rules for fuzzing

© 2017 SEC Consult | All rights reserved

1. Start fuzzing!

2. Start with simple fuzzing, during fuzzing add more logic to the next fuzzer version

3. Use Code/Edge Coverage Feedback

4. Create a good input corpus (via download or feedback)

5. Minimize the number of sample files and the file size

6. Use sanitizers / heap libraries during fuzzing (not for corpus generation)

7. Modify the mutation engine to fit your input data

8. Skip the “initialization code” during fuzzing (fork-server, persistent mode, …)

9. Use wordlists to get a better code coverage

10. Instrument only the code which should be tested

11. Don’t fix checksums inside your Fuzzer, remove them from the target application (faster)

12. Start fuzzing!

Fuzzing rules

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

A last hint…

Fuzzing can show the presence bugs
but can’t prove the absence of bugs!

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Thank you for your attention!

Source: Twitter

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

For any further questions contact

your SEC Consult Expert.

René Freingruber
@ReneFreingruber

r.freingruber@sec-consult.com

+43 676 840 301 749

SEC Consult Unternehmensberatung GmbH

Mooslackengasse 17

1190 Vienna, AUSTRIA

www.sec-consult.com

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

https://twitter.com/renefreingruber?lang=de
mailto:r.freingruber@sec-consult.com
http://www.sec-consult.com/

© 2017 SEC Consult | All rights reserved

SEC Consult in your Region.

RUSSIA

CJCS Security Monitor

5th Donskoy proyezd, 15, Bldg. 6

119334, Moscow

Tel +7 495 662 1414

Email info@securitymonitor.ru

THAILAND

SEC Consult (Thailand) Co.,Ltd.

29/1 Piyaplace Langsuan Building 16th Floor, 16B

Soi Langsuan, Ploen Chit Road

Lumpini, Patumwan | Bangkok 10330

Email office-vilnius@sec-consult.com

LITHUANIA

UAB Critical Security, a SEC Consult company

Sauletekio al. 15-311

10224 Vilnius

Tel +370 5 2195535

Email office-vilnius@sec-consult.com

SINGAPORE

SEC Consult Singapore PTE. LTD

4 Battery Road

#25-01 Bank of China Building

Singapore (049908)

Email office-singapore@sec-consult.com

CANADA

i-SEC Consult Inc.

100 René-Lévesque West, Suite 2500

Montréal (Quebec) H3B 5C9

Email office-montreal@sec-consult.com

AUSTRIA (HQ)

SEC Consult Unternehmensberatung GmbH

Mooslackengasse 17

1190 Vienna

Tel +43 1 890 30 43 0

Fax +43 1 890 30 43 15

Email office@sec-consult.com

GERMANY

SEC Consult Deutschland

Unternehmensberatung GmbH

Ullsteinstraße 118, Turm B/8 Stock

12109 Berlin

Tel +49 30 30807283

Email office-berlin@sec-consult.com

SWITZERLAND

SEC Consult (Schweiz) AG

Turbinenstrasse 28

8005 Zürich

Tel +41 44 271 777 0

Fax +43 1 890 30 43 15

Email office-zurich@sec-consult.com

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

