I o 6
SEC Consult

Introduction

* René Freingruber (r.freingruber@sec-consult.com)
« Twitter: @ReneFreingruber
« Security Consultant at SEC Consult
» Reverse Engineering, Exploit development, Fuzzing
e Trainer at SEC Consult
» Secure Coding in C/C++, Reverse Engineering
» Red Teaming, Windows Security
« Speaker at conferences:

« CanSecWest, DeepSec, 31C3, Hacktivity, BSides Vienna, Ruxcon, ToorCon,
NorthSec, IT-SeCX, QuBit, DSS ITSEC, ZeroNights, Owasp Chapter, ...

« Topics: EMET, Application Whitelisting, Hacking Kerio Firewalls, Fuzzing Mimikatz, ...

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

mailto:r.freingruber@sec-consult.com

A
SEC I ADVISOR FOR YOUR INFORMATIC

Vilnius | LT

Berlin| DE
\. ~~_— Moscow | RU
i _ v a
Zurich | CH - o AA \

Vienna (HQ) NT\""\ -

Wiener Neustadt | AT,

Founded 2002 . \
Leading in IT-Security Services and Sihgapore | sG
Consulting

Bangkok | TH

Strong customer base in Europe and Asia
70+ Security experts

: di @ SEC Consult Offices
400+ Security audits per year SEC Consult Clients

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

- M M mla
= I

A
1@?

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Consider this pseudocode

if(read_line_from_user () == "command”™) {
if{read_line_from_user() == "subcommand™) {
if(read line from user() == "trigger") ({

//buffer_pverflow here

}

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

= Input ,,command\n“results in the orange code-coverage output

if(read_line_from_user () == "command") ({
if{read_line_from_user() == "subcommand™) {
if(read line from user() == "trigger") ({

//buffer_pverflow here

}

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

=» Same for ,,command\nsubcommand\n*

if(read_line_from_user () == "command") ({
if(read_line_from_user() == "subcommand") {
if(read line from user() == "trigger") ({

//buffer_pverflow here

}

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

= And so on...

if(read line from user () == "command") {
1f(read line from _user () == "subcommand") {
' 1f(read line from _user() == "trigger"™) {

//buffer overflow here

}

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Methods to measure code-coverage

1. Instrumentation during compilation (source code available; gcc or llvm = AFL)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

e One of the most famous file-format fuzzers
» Developed by Michal Zalewski

* Instruments application during compile time (GCC or LLVM)
« Binary-only targets can be emulated / instrumented with gemu
* Forks exist for PIN, DynamoRio, DynlInst, syzygy, IntelPT, ...
« Simple to use!
« Good designed! (very fast & good heuristics)

e Strategy:
1. Start with a small min-set of input sample files
2. Mutate “random” input file from queue like a dumb fuzzer
3. If mutated file reaches new path(s), add it to queue

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

« Just use afl-gcc instead of gcc...

user-VirtualBox# afl-gcc -o
2.35b by <lcamtuf@google.com=>

2.35b by <lcamtuf@google.com>
(64-bit, non-hardened mode, ratio 100%).

[+] Instrumented 6 locations
user-VirtualBox# ./test2 1
Test?2

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public
ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

[rbptuar_#4],

 Basic Blocks: _
short loc_H40055B

edi, offset s : "Test1l\n"
_puts loc_HOOSSB: : "Test2\n”

short loc_400565 mouy edi, offset aTest2
call _puts

loc_400565: ; Test3\n”

mov edi, offset aTest3
call _puts loc_400576:

oy eax, mouv eax,
jmp short locret_40057B

retn
main endp

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved
ADVISOR FOR YOUR INFORMATION SECURITY

« Result:

¥ "~ B
e

duword ptr [rax loc_H4OOTESD

rsp, [rsp-] argv = rsi
S'[O.re old [rsp+ +yar_A0], ¢ = rdi
register values [rsp+ +yar_ 98], nop dword ptr [rax

[rsp+ +par_901], lea rsp, [rsp-]

. Fecx, mow [Fﬂp+ +UﬁF_ﬁD]_ rax

Instrumentation __afl_maybe_log "oV [rsp+ +yar 98], rex

~ax, [rspt +yar_90] mou [rsp+ +uar_90], rax
Restore old rex, [rsp+ +tyar_98] mou rex,
register values rdx, [rsp+ tuar _RO] call _-afl_maybe_log

mou ~ax, [rsp+ +yar_90]

mou rex, [rspt +uar_98]

mov rdx, [rsp+ +uar_Ao]

lea rsp, [rspt]

mou edi, offset aTestl ; "Testi\n”
call _puts

jmp loc_HB80TIE

|-' = |:':| . [|-' = F| ‘I‘
edi, offset s : "Test2\n"
_puts

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

* |Instrumentation tracks edge coverage, injected code at every basic block:

cur location = <compille time random value>;
bitmap|[(cur location © prev location) % BITMAP SIZE]++;
prev location = cur location >> 1;

=>» AFL can distinguish between
- A->B->C->D->E (tuples: AB, BC, CD, DE)
« A->B->D->C->E (tuples: AB, BD, DC, CE)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

* |Instrumentation tracks edge coverage, injected code at every basic block:

cur location = <compille time random value>;
bitmap|[(cur location © prev location) % BITMAP SIZE]++;
prev location = cur location >> 1;

=>» AFL can distinguish between
- A->B->C->D->E (tuples: AB, BC, CD, DE)
« A->B->D->C->E (tuples: AB, BD, DC, CE)

=> Without shifting A->B and B->A are indistinguishable

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

AFL-FUZZ, GZIP BINARY

2,000 EXECS/SEC, I CORE, § HOURS

LEVEL I TEST CASES
DOCOVERARLE VIA BLIND W22NG
- 2
o 2.
o s
o 19
o4 e
o AL
of wou e
o a1
of v 0
o 2%
- Qaon
o N
ERLE
o
of 2
- un
o WIB
o amon
Jaman
o amin
o Qs
o 20n
o
CRLUE]

- Man

- una
-
LR
- 2NN
W e
- M0
- N
4w

« N
-« an
o neo N

gif

- qna

" 88

R

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

o nwar « man
CRUELE b
o w2t
- ana
o M
= A - 4o
o
- M
« anay
o s
doaw
o war
oy
o 1T
“ T
o 0
- Man
o il
- 4 an
« Wan
- Wan
o
o mam
- W
o e . W
- W « o
o Wi
o Wi
- aian - AN

- e

- -

LEVEL 2 TEST CASES
DERIVED BY MECENG THE PUZIER
WITH TEAY CAVES [SOLATED 0%
FLIVOUS LEVE !

- w1

o{ Source:

« mam

http://lcamtuf.coredump.cx/afl_
gzip.png

Without instrumentation just the
first level will be discovered (or it
would take an extremely long time)

« Mo

i LEVEL 6 TEST CASES
- Hd | - NN
- - N
- w) — ~ -— -
- - anan
£55
- -_N-)IO b — - MM
o

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

american fuzzy lop 2.49b (readelf)

42 days, 19 hrs, 27 min, 41 sec
0 days, 1 hrs, 45 min, 10 sec

5 days, 19 hrs, 58 min, 31 sec
1 days, 16 hrs, 58 min, 37 sec

0.39% / 18.87%
4.30 bits/tuple
depth

i

bitflip 1/1 ' 2220

880/106k (0.83%) 3431 (23.

4.54G 1286 (25 unique)
ﬁ338fsec 25.5k (224 unique)
path geometry

1418/474M, 557/474M
57/13.2M, 57/13.6M
19/548M, 182/375M
T.EN, 359/22eM, 374/425M
U;Q, 1061 /659M
_;Jp 0/0
.13M, 78.13%

y
Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public SEc Consult
© 2017 SEC Consult | All rights reserved 4

ADVISOR FOR YOUR INFORMATION SECURITY

uHL;mumfn
Oy M Oy OOy 0D D

I:'IJ lad

I T T '--.
S |I‘“\ oo

[~ =«

Corpus Distillation

« We can either start fuzzing with an empty input folder or with downloaded /
generated input files

 Empty file:
* Let AFL identify the complete format (unknown target binaries)
e Can be very slow

 Downloaded sample files:
* Much faster because AFL doesn‘t have to find the file format structure itself
« Bing API to crawl the web (Hint: Don‘t use DNS of your provider ...)
« Other good sources: Unit-tests, bug report pages, ...
* Problem: Many sample files execute the same code =» Corpus Distillation

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

Steps for fuzzing with AFL:

1. Remove input files with same functinality:

Hint: Call it after tmin again (cmin is a heuristic)
./afl-cmin -1 testcase dir -o testcase out dir
/path/to/tested/program [...program's cmdline...]

2. Reduce file size of input files:
./afl-tmin -1 testcase file -o testcase out file
/path/to/tested/program [...program's cmdline...]

3. Start fuzzing:
./afl-fuzz -1 testcase dir -o findings dir /path/to/tested/program
[...program's cmdline...] @

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

« AFL input with invalid 4xm file (strk chunk changed to str))

POOEO0eEEEAAvErkD...000000000000000000000000
000000. .00. .00000000000000000000000000000000
0000000000000000000000000CA22A20000000000000

GEEILEEEEEEEEEEEEEL R d e ¢
000000000000000000...."0..0...LISTOOOOMOVILI

* AFL still finds the vulnerability!
 Level 1 identifies correct “strk” chunk

* Level 2 based on level 1 output AFL finds the vulnerability (triggered by Oxfffffftf)

30 30 30 30
30 30 30 30
30 30 73 74
00 60 20 00

30 30 30
30 30 30
6B 28 00
00 4C 49

30 30 30
30 30 3f
00 00 FF
53 54 30

30 30 30
iA_30 30
FF 00 00O
30 4D 4F

30 30 30
30 30 30
00 30 30
49 4C 49

000000. .00..00000000000000000000000000000000
00
POAGHNOEROANAO00000NA00000 Istrk(

000000000000000000...."0..0...LISTOOOOMOVILI

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

 LibFuzzer — Similar concept to AFL but in-memory fuzzing
 Requires LLVM SanitizerCoverage + writing small fuzzer-functions
e LibFuzzer is more the Fuzzer for developers
« AFL fuzzes the execution path of a binary (no modification required)

« LibFuzzer fuzzes the execution path of a specific function (minimal
code modifications required)
* Fuzz functionl which processes data format 1 =» Corpus 1
* Fuzz function2 which processes data format 2 =» Corpus 2
 AFL can be also do in-memory fuzzing (persistent mode)

* Highly recommended tutorial: http://tutorial.libfuzzer.info

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

http://tutorial.libfuzzer.info/

Methods to measure code-coverage

2. Emulation of binary (e.g. with gemu)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Methods to measure code-coverage

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful
INn some situations)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Methods to measure code-coverage

4. Dynamic instrumentation of compiled application (no source code required,;
tools: DynamoRio, PIN, Valgrind, Frida, ...)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Dynamic Instrumentation Frameworks

« Dynamic runtime manipulation of instructions of a running application!

« Many default tools are shipped with these frameworks
« drrun.exe —t drcov -- calc.exe
« drrun.exe —t my_tool.dll -- calc.exe
e pin -tinscount.so -- /bin/ls

* Register callbacks, which are trigger at specific events
* new basic block / instruction
» load of module, exit of process, ...

« At callback (e.g. new basic block), we can further add instructions
« Transformation time (Instrumentation Function): Analyzing a BB the first time (called once)
« Execution time (Analysis Function): Executed always before instruction gets executed

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

DynamoRIO

application code software

Transformation time

xecution time

DynamoRIO

indirect
branch
lookup

Source: The DynamoRIO Dynamic Tool Platform, Derek Bruening, Google

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

DynamoRIO

« Example: Start Adobe Reader, load PDF file, exit Adobe Reader, extract coverage data
(Processing 25 PDFs with one single CPU core)

* Runtime without DynamoRio: ~30-40 seconds

« BasicBlock coverage (no hit count): 105 seconds
* Instrumentation only during transformation into code cache (transformation time)

« BasicBlock coverage (hit count): 165 seconds
* Instrumentation on basic block level (execution time)

« Edge coverage (hit count): 246 seconds

* Instrumentation on basic block level (many instructions required to save and
restore required registers for instrumentation code) (execution time)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

DynamoRio vs PIN

* PIN is another dynamic instrumentation framework (older)
« Currently more people use PIN (=» more examples are available)
 DynamoRio is noticeable faster than PIN

« But PIN is more reliable
 DynamoRio can'’t start Encase Imager, PIN can
 DynamoRio can’t start CS GO, PIN can
« During client writing | noticed several strange behaviors of DynamoRio

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

WInAFL

 WInAFL - AFL for Windows
 Download: https://qgithub.com/ivanfratric/winafl
« Developed by Ivan Fratric

 Two modes:
« DynamoRio: Source code not required
« Syzygy: Source code required
« Alternative: You can easily modify WIinAFL to use PIN on Windows

* Windows does not use COW (Copy-on-Write) and therefore fork-like mechanisms are not
efficient on Windows!

* On Linux AFL heavily uses a fork-server
* On Windows WInAFL heavily uses in-memory fuzzing

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

https://github.com/ivanfratric/winafl

WInAFL

How to select a target function

The target function should do these things during its lifetime:

1. Open the input file. This needs to happen withing the target function so that you can read a new input file for each
iteration as the input file is rewritten between target function runs).

2. Parse it (so that you can measure coverage of file parsing)
3. Close the input file. This is important because if the input file is not closed WinAFL won't be able to rewrite it.
4. Return normally (So that WinAFL can "catch" this return and redirect execution. "returning" via ExitProcess() and such

won't work)

Source: https://github.com/ivanfratric/winafl FAQ

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

https://github.com/ivanfratric/winafl

WInAFL

GUI Applications

Q: Can I fuzz GUI apps with WinAFL
A: Yes, provided that
- There 1is a target function that behaves as explained in "How to select
a target function”
- The target function is reachable without user interaction
- The target function runs and returns witho user interaction
If these conditions are not satisfied, you migNt need to make custom changes

to WinAFL and/or your target.

Source: https://github.com/ivanfratric/winafl FAQ

Autolt can easily solve this problem

DynamoRio / PIN to change instruction ptr

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

https://github.com/ivanfratric/winafl

Autolt

O J o U W

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

#include <AutolItConstants.au3>

Run ("notepad.exe")

Local $hWand = WinWait (" [CLASS:Notepad]", "", 10)
ControlSend (ShWand, "", "Editl", "Hello World")
WinClose ($ShWand)

ControlClick (" [CLASS:#32770]"™, "", "Button3")
WinSetState (" [CLASS:Notepad]", "", @SW MAXIMIZE)
MouseMove (14, 31)

MouseClick ($SMOUSE CLICK LEFT)

MouseMove (85, 209)

MouseClick (SMOUSE CLICK LEFT)
ControlClick (" [CLASS:#327701"™, "", "Button2")

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Autolt

 Another use case: Popup Killer
« During fuzzing applications often spawn error message; popup killer closes them

« Another implementation can be found in CERT Basic Fuzzing Framework (BFF)
Windows Setup files (C++ code to monitor for message box events)

1 #include <MsgBoxConstants.au3>
2 BWhile 1
3 Local $alist = WinList ()
4 o ; SaList[0] [0] number elements
5 + SalList[x][0] => title ; SaList[x][1] => handle
B @ For $1 =1 To $alList[0][0]
7 E If StringCompare ($aList[$1][0], "Engine Error") == 0 Then
8 ControlClick($aList[$1]([1], "™, "Button2", "left", 2)
9 + EndIf
10 - Next
11 sleep (500) ,; 500 ms
12 WEnd

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Methods to measure code-coverage

5. Static instrumentation via static binary rewriting (Talos fork of AFL which uses
Dynlinst framework — AFL-dyninst, should be fastest possibility if source code is
not available but it's not 100% reliable and currently Linux only); WIinAFL in
syzygy mode is very useful on Windows if source-code is available!

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Methods to measure code-coverage

6. Use of hardware features
« IntelPT (Processor Tracing); available since 6 Intel-Core generation (~2015)

* WindowsiIntelPT (from Talos) or KAFL

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer
Results

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Overview: Areas which influence fuzzing results

Fork-server

Faster instrumentation code
Static vs. Dynamic
Instrumentation

In-memory fuzzing

NO process switches

Fuzzer speed Input filesize

Fuzzer
Results

Page heap / Heap libs
Sanitizers (ASAN, MSAN,
SyzyASan, DrMemory, ..)
Dangling Pointer Check
Writeable Format Strings Check

Detection rate Mutators

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

AFL-tmin & AFL-cmin
Heat maps via

Taint Analysis and
Shadow Memory

Application aware mutators
Generated dictionaries

Append vs. Modify mode
Grammar-based mutators

Use of feedback from application

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Areas which influence fuzzing results

Fuzzer speed

Fuzzer
Results

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Fuzzer Speed

1. Fork Server
2. Deferred Fork Server
3. Persistent Mode (in-memory fuzzing)

4. Prevent process switches (between target application and the Fuzzer) by injecting the Fuzzer
code into the target process

5. Modify the input in-memory instead of on-disk
6. Use a RAM Disk

7. Remove slow API calls

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

GUI automation — Example HashCalc

H] HoshCae o o s

[ata Format: [ata:
ITe:-:t string LI Imy_input_string

K.ep Farmat: K.ey:

[HMaC ITe:-:t zhring ;I I

¥ MD5 | 4dbef ab5R9e275fc9be1 26067212404

v MD4 | 3129471 25021 do283HaBdc 2o 20022

¥ SHAT | 779da36i642d7 ac0dI6ea5b 33906 BebasT al3e

IV SHAZEE |613e01e97ddadfedB2e57130caba7 HefG04 7707 B deb3c 3929066037416
I~ SHAZRd |

V¥ SHAS12 [b37h7d171a2e02dBaf341 20671021 7186ebafbdh 31 dadb504d53ed476293eB4ashdd85 3046 7cI0Be0320:
I™ RIFEMD1EQ |

I~ PaMaMa |
™ TIGER |
I~ mMD2 |
I~ aDLER32 |

V¥ CRC3Z |2afff7d2

ellonkey!
r ehdule I

SlaveeSaft | Calculate I Cloze Help

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Question 1.
What is the maximum MD5
fuzzing speed with GUI
automation?

Question 2:
How many MD5 hashes can
you calculate on a CPU per
second?

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

GUI automation

 HashCalc.exe MD5 fuzzing
« GUI automation with Autolt: ~3 exec / sec
* In-Memory with debugger: ~750 exec / sec

* In-Memory with DynamoRio (no instr.): ~200 000 exec / sec

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

WInAFL

« How to find the target function without source code?

1. Measure code coverage (drrun —t drcov) in two program invocations, one should
trigger the function, one not. Then substract both traces (IDA Pro lighthouse)

2. Log all calls and returns together with register and stack values to a logfile. Then
search for the correct input / output combination (IDA Pro funcap or a simple
DynamoRio / PIN tool)

3. Place memory breakpoints on the input

4. Use ataint engine (see later)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Input filesize

Fuzzer
Results

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Input file size

 The input file size is extremely important!

« Smaller files
« Have a higher likelihood to change the correct bit / byte during fuzzing
» Are faster processed by deterministic fuzzing
» Are faster loaded by the target application

« AFL ships with two utilities
* AFL-cmin: Reduce number of files with same functionality

« AFL-tmin: Reduce file size of an input file
« Uses a “fuzzer” approach and heuristics
* Runtime depends on file size
* Problems with file offsets

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Input file size

« Example: Fuzzing mimikatz

 Initial memory dump: 27 004 528 Byte
 Memory dump which | fuzzed: 2 234 Byte

= I’'m approximately 12 000 times faster with this setup...

* You would need 12 000 CPU cores to get the same result in the same time as my
fuzzing setup with one CPU core

« Or with the same number of CPU cores you need 12 000 days (~33 years) to get the
same result as | within one day

* In reality it's even worse, since you have to do everything again for every queue entry
(exponential)

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public N I
©4 SEC Consult

© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public N I
©4 SEC Consult

© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

See below link for in-depth discussion how | fuzzed mimikatz with WinAFL.:

Dl pid 2740 -

-

X mimikatz 2.1.1 x86 (oe.e0)

C:\Users\normalUser\Desktophtest mimikatz\real mimikatz>mimikatz.exe

IR HhiHHE . mimikatz 2.1.1 (x86) built on Aug 13 2017 17:27:38
Rl Hi . H La Vie, H L Hmour
5 commed AR I
el Hit \ / ## Benjamin DELPY ‘gentilkiwi’ (benjamin@gentilkiwi.com)
Hodlosd | EIEGIRVIRL N http://blog.gentilkiwi.com/mimikatz {oe.eo)
ModLoad: il with 21 modules = = =/
ModLoad:
HodLoad: L .. .
et lliminikatz # sekurlsa::minidump exploit.dmp
atraaellSwitch to MINIDUMP : "exploit.dmp’
odLoad :
HodLioad : Lo
HodlLoad: mimikatz # sekurlsa::logonpasswords
raesaeslOpening @ ‘exploit.dmp’ file for minidump. ..
HodLoad ; | -
HodLoad:
HodLoad:
HodLioad :
HodLoad:
ModLoad:
(abd fa0): Access wiolation — code 0000005 (11l second chance 111) E
22200000000 ~he=02b406be ecx=00000004 =dx=00000000 esi=0010fd7c edi=00&bfa2@ 3
|E&p=41414141 e=p=0010fd44 =bp=0010£d450 iopl=0 nv up =21 pl zr na pe nc
Sem—— 53 J__ 07 -0022 £=-003b g=-0000 =f1-00010246
41414141 77 ???i
4 Inr [
[0 000> |

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

https://www.sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-heatmaps-0day/index.html

Creation of heatmaps

« For mimikatz | used a WinAppDbg script to extract file access information
« Very slow approach because of the Debugger
« Can't follow all memory copies =» Hitcounts are not 100% correct

« Better approach: Use dynamic instrumentation / emulation
« libdft
e Triton
 Panda
* Manticore
« Own PIN / DynamoRio tool

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Combine Call-Graph with Taint-Analysis

=>» We can write a DynamoRIo/PIN tool which tracks calls and taint status

=> Automatically detect target fuzz function
_start

Target
Function
to fuzz

access acCCess

func6 func? func8 func9

aCCess aceess acCCess

aCCesSs

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public ‘@'
© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Fuzzing with taint analysis

1. Typically byte-modifications are uniform distributed over the input file
2. With taint analysis we can distribute it uniform over the tainted instructions!

20 Mutations

20 Mutations

20 Mutations

20 Mutations

20 Mutations

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

If this sets EFLAGS and can change
a cc jump, it should give an extra boost...

20 Mutations\s

50 Mutations
20 Mutations

10 Mutations

0 Mutations

Maybe don‘t fuzz this at all
X2 is maybe a

Instruction X1: Read byte 2 COPY / séarch function
Instruction X2: Read byte 1,2,3,4
Instruction X3: Read byte 2

Instruction X4: Read byte 1,2
Instruction X5: Read byte 2,3

Byte 1 read by 2 instructions 2/10 = 20%
Byte 2 read by 5 instructions 5/10 = 50%
Byte 3 read by 2 instruction 2/10 = 20%
Byte 4 read by 1 instruction 1/10 = 10%

Byte 5 read by O instructions 0/10 = 0%

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

=>» Automatically detect target fuzz function

=» Taint engine can be used on first fuzz iteration =» All writes can be logged with the address to
revert the memory state for new fuzz iterations

=> Enable taint engine logging only for new code coverage = Automatically detect which bytes make
the new input unigue and focus on fuzzing them!

=» Call-instruction logging can be used to find interesting functions
« Malloc / Free functions (to automatically change to own heap implementation)
« Own heap allocator can free all chunks allocated in a fuzz iteration =» No mem leaks
« Better vulnerability detection (see later slides)
« Compare functions =» Return the comparison value to the fuzzer
* Checksum functions = Automatically “remove” checksum code
« Error-handling functions
= Focus fuzzing on promising bytes

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer
Results

Mutators

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Areas which influence fuzzing results

Fuzzer
Results

Detection rate

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Heap Overflow Detection

Page (4096 byte), read- & write-able

Meta Meta

Data Heap Data 1 Data Heap Data 2

—
Heap Overflow

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Heap Overflow Detection

Page (4096 byte)
NOT read- & write-able

Meta

: Heap Data 1
Unused (special pattern) Data

—
Heap Overflow

Page (4096 byte)
NOT read- & write-able
Meta

: Heap Data 2
Unused (special pattern) Data P

_

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Use-After-Free Detection

Page (4096 byte)
NOT read- & write-able

Meta

: Heap Data 1
Unused (special pattern) Data

_

FREE

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Use-After-Free Detection

Page (4096 byte) Page (4096 byte)
NOT read- & write-able NOT read- & write-able

Meta

Data Heap Data 1

Access attempt
Access attempt

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Heap Library

« Libdislocator (shipped with AFL)

» https://github.com/DhavalKapil/libdheap

« AFL HARDEN=1 make (Fortify Source & Stack Cookies)
 On Windows: Page heap with Application Verifier

« Own heap allocator which checks after free() all memory locations for a dangling
pointer!

« Detect Use-After-Free at free and not at use step
» Concept similar to MemGC protection from Edge

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

https://github.com/DhavalKapil/libdheap

Detecting not crashing vulnerabllities

« LLVM has many useful sanitizers!

« Address-Sanitizer (ASAN)

» -fsanitize=address

« QOut-of-bounds access (Heap, stack, globals), Use-After-Free, ...
Memory-Sanitizer (MSAN)

« -fsanitize=memory

* Uninitialized memory use
« UndefinedBehaviorSanitizer (UBSAN)

« -fsanitize=undefined

« Catch undefined behavior (Misaligned pointer, signed integer overflow, ...)

« DrMemory (based on DynamoRio) if source code is not available

=2 Use sanitizers during development !!!

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Detecting not crashing vulnerabllities

 During corpus generation don’t use sanitizers = performance

After we have a good corpus, start fuzzing it with sanitizers / injected libraries

| prefer heap libraries because they are faster and run after the first fuzzing
session the corpus against binaries with sanitizers for some days

| don’t use heap libraries for the master fuzzer (deterministic fuzzing must be fast)

« AFL performance example; one core; no in-memory fuzzing:

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

x64 binary: 1400 exec / sec

x86 binary: 1200 exec / sec

x86 hardened binary: 1150 exec / sec

x86 hardened binary + libdislocator: 600 exec / sec
x86 binary with Address Sanitizer: 200 exec / sec

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Fuzzing rules

Start fuzzing!

Start with simple fuzzing, during fuzzing add more logic to the next fuzzer version
Use Code/Edge Coverage Feedback

Create a good input corpus (via download or feedback)

Minimize the number of sample files and the file size

Use sanitizers / heap libraries during fuzzing (not for corpus generation)

Modify the mutation engine to fit your input data

Skip the “initialization code” during fuzzing (fork-server, persistent mode, ...)

Use wordlists to get a better code coverage

10. Instrument only the code which should be tested

11. Don'’t fix checksums inside your Fuzzer, remove them from the target application (faster)
12. Start fuzzing!

© 0N Ok WDNPRE

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

A last hint...

Fuzzing can show the presence bugs
but can’t prove the absence of bugs!

Thank you for your attention!

I wrote a vulnerability

scanner that abstracts He wrote a dumb ass
all the predicates in a fuzzer and found 5
binary, traverses the vulns in 1 day.

callgraph and generates
phormulaes to run then
with a SMT solver.
I found 1 vuln in
3 days with this tool.

Good thing I'm
not a n00b like
that guy.

Source: Twitter

A
1@?

© 2017 SEC Consult | All rights reserved
ADVISOR FOR YOUR INFORMATION SECURITY

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

For any further questions contact

your SEC Consult Expert.

René Freingruber
@ReneFreingruber

r.freingruber@sec-consult.com

+43 676 840 301 749

SEC Consult Unternehmensberatung GmbH

Mooslackengasse 17
1190 Vienna, AUSTRIA

WWW.Ssec-consult.com

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

A
1@?

ADVISOR FOR YOUR INFORMATION SECURITY

https://twitter.com/renefreingruber?lang=de
mailto:r.freingruber@sec-consult.com
http://www.sec-consult.com/

SEC Consult in your Region.

AUSTRIA (HQ)

SEC Consult Unternehmensberatung GmbH
Mooslackengasse 17
1190 Vienna

Tel +43 1890 30430
Fax +43 1 890 30 43 15
Email office@sec-consult.com

LITHUANIA

UAB Critical Security, a SEC Consult company
Sauletekio al. 15-311
10224 Vilnius

Tel +370 5 2195535
Email office-vilnius@sec-consult.com

RUSSIA

CJCS Security Monitor

5th Donskoy proyezd, 15, Bldg. 6
119334, Moscow

Tel +7 495 662 1414

Email info@securitymonitor.ru

GERMANY

SEC Consult Deutschland
Unternehmensberatung GmbH
Ullsteinstral3e 118, Turm B/8 Stock
12109 Berlin

Tel +49 30 30807283
Email office-berlin@sec-consult.com

SINGAPORE

SEC Consult Singapore PTE. LTD
4 Battery Road

#25-01 Bank of China Building
Singapore (049908)

Email office-singapore@sec-consult.com

THAILAND
SEC Consult (Thailand) Co.,Ltd.

29/1 Piyaplace Langsuan Building 16th Floor, 16B

Soi Langsuan, Ploen Chit Road
Lumpini, Patumwan | Bangkok 10330

Email office-vilnius@sec-consult.com

Title: Fuzzing closed source applications | Responsible: R. Freingruber | Version / Date: V1.0/2017-10 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

SWITZERLAND

SEC Consult (Schweiz) AG
Turbinenstrasse 28

8005 Zlrich

Tel +41 44 2717770

Fax +43 1 890 30 43 15

Email office-zurich@sec-consult.com

CANADA

i-SEC Consult Inc.
100 René-Lévesque West, Suite 2500
Montréal (Quebec) H3B 5C9

Email office-montreal@sec-consult.com

©r

ADVISOR FOR YOUR INFORMATION SECURITY

