
© Copyright Fortinet Inc. All rights reserved.

Hijacking the Boot Process
Ransomware Style

 November 09-10, 2017
Raul Alvarez

2

About Me

 Senior Security Researcher
@ Fortinet

 22 published articles in Virus
Bulletin

 Regular contributor in our
company blog

3

5.25”
 360kb and 1.2mb

3.5”
1.44mb

Trivia

Floppy disks
First One

Gigabyte HD

•IBM 3380 HDA
•1Gb
• single hard drive assembly (HDA)
• announced June 1980
• 75 pounds

1Tb
= 1,024 X

= 2,048 X

= 256 X

4

Partition 02

Partition 01

Track 0, Head 0, Sector 1

credit: internet
For floppy disk: Boot Sector

sectors

For HD: MBR (Master Boot Record)

sectors sectors

Cylinder 0, Head 0, Sector 1

Cylinder 0, Head 0, Sector 1

Creating MBR and GPT partitions

6

Two Types Of Partioning

MBR-style
» Standard BIOS

» First sector contains Master Boot Record

» MBR contains the partition table

 GPT (GUID Partition Table)
» UEFI - Unified Extensible Firmware Interface

 UEFI includes a mini–operating system environment implemented in
firmware (typically flash memory)

» UEFI defines a partitioning scheme called GUID
 GUID (globally unique identifier) Partition Table (GPT)

» First sector contains protective MBR

» Second and last sectors store the GPT headers

Using Disk Management

8

GPT and MBR-Style Disk

Initialize the new disk as MBR
or GPT

Disk 1 as MBR

Using Disk Management

Initialize the new disk as MBR
or GPT

Disk 2 as GPT

9

Disk Conversion

Convert a
GPT disk to

MBR

Convert an
MBR disk to

GPT

10

GPT and MBR-Style Partitions

Creating disk partitions

MBR can only have
4 primary partitions

Extended partitions

GPT can have unlimited
number of primary

partitions

Using DISKPART

12

Using DISKPART

Using DISKPART

* denotes GPT disk

13

GPT and MBR Disk Structure

Master Boot Record

MBR Disk
CHS

C = 0, H = 0, S = 1

GPT Disk
LBA

LBA 0

Cylinder-Head-Sector Addressing

Partition 1 Partition 2 Partition n ...

Partition 1 Partition 2 Partition 3

Partition 4

Logical Block Addressing

LBA CHS

0 0,0,1

1 0,0,2

2 0,0,3

3 0,0,4

62 0,0,63

63 0,1,1

64 0,1,2

125 0,1,63

1024 1,0,17

1147 1,2,14

2017 2,0,2 Partition Table Header

LBA 1 LBA n

16 heads per cylinder

Partition 3

Logical Partitions

Petya

15

Execution Flow

 New executable image

 .xxxx section

 Bootable disk

 Initial call to DeviceIoControl

 \\.\PhysicalDrive0

 Read, Encrypt, and Overwrite

 Reboots the system to activate the payload

 Payload in a debugger

16

New Executable Image

•The new executable image is decrypted with the following codes
• Each pass only decrypts a DWORD value

start of pass

end of pass

17

New Executable Image

• checks if it is a valid executable image, with
proper MZ/PE marker

start of pass

end of pass

18

New Executable Image

• resolves GetProcAddress, LoadLibraryA, and VirtualAlloc APIs by
comparing the hashed values of the different APIs in kernel32 library

hashed values API

7C0DFCAA GetProcAddress

EC0E4E8E LoadLibraryA

91AFCA54 VirtualAlloc

19

New Executable Image

• allocates new virtual memory using VirtualAlloc
• copies the new image to the new virtual memory, section by section
• resolves APIs using the GetProcAddress

new memory location

API names

API address

API addresses

20

Execution Flow

 New executable image

 .xxxx section

 Bootable disk

 Initial call to DeviceIoControl

 \\.\PhysicalDrive0

 Read, Encrypt, and Overwrite

 Reboots the system to activate the payload

 Payload in a debugger

21

.xxxx section

• locates and decrypts .xxxx section

00300838

00300838

decrypted

encrypted

.xxxx
section

XOR decryptor

22

Execution Flow

 New executable image

 .xxxx section

 Bootable disk

 Initial call to DeviceIoControl

 \\.\PhysicalDrive0

 Read, Encrypt, and Overwrite

 Reboots the system to activate the payload

 Payload in a debugger

23

Bootable Disk

• locates bootable disk
• terminates if the malware can’t open drive C:

logical drive

logical drive

terminates

24

CreateFile()

 - to open a physical or logical drive
 - use FILE_SHARE_READ and FILE_SHARE_WRITE flag

logical drive

physical drive

• Logical Drive
 \\.\C:
 hard drive partition letter, e.g. drive C:

• Physical Drive
 \\.\PhysicalDrive0
 physical drive are represented as \\.\PhysicalDriveX,
 where X is 0,1,2

25

Execution Flow

 New executable image

 .xxxx section

 Bootable disk

 Initial call to DeviceIoControl

 \\.\PhysicalDrive0

 Read, Encrypt, and Overwrite

 Reboots the system to activate the payload

 Payload in a debugger

26

DeviceIoControl()

 Sends a control code directly to a specified device driver, causing the
 corresponding device to perform the corresponding operation.

Syntax:

BOOL WINAPI DeviceIoControl(

 In HANDLE hDevice,

 In DWORD dwIoControlCode,

 _In_opt_ LPVOID lpInBuffer,

 In DWORD nInBufferSize,

 _Out_opt_ LPVOID lpOutBuffer,

 In DWORD nOutBufferSize,

 _Out_opt_ LPDWORD lpBytesReturned,

 _Inout_opt_ LPOVERLAPPED lpOverlapped

);

27

Initial call to DeviceIoControl()
BOOL

WINAPI

DeviceIoControl(000000A0, // handle to device

 IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS, // dwIoControlCode

 NULL, // lpInBuffer

 0, // nInBufferSize

 0012F218, // output buffer

 32, // size of output buffer

 0, // number of bytes returned

 NULL // OVERLAPPED structure

);

dwIoControlCode:
 0x560000
 IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS

lpOutBuffer:
 A pointer to a buffer that receives a
VOLUME_DISK_EXTENTS structure that specifies the
physical location of the disk.

 VOLUME_DISK_EXTENTS structure
 Represents a physical location on a disk.

28

Bootable Disk

logical drive

logical drive

terminates

the initial calls to CreateFileA() and DeviceIoControl() are
used to check if the drive C: is accessible

29

Execution Flow

 New executable image

 .xxxx section

 Bootable disk

 Initial call to DeviceIoControl

 \\.\PhysicalDrive0

 Read, Encrypt, and Overwrite

 Reboots the system to activate the payload

 Payload in a debugger

30

\\.\PhysicalDrive0

 Disk Device Objects created by Windows disk class

driver

» \Device\HarddiskX\DRX

 \Device\Harddisk0\DR0

 \Device\Harddisk0\DR1

 Backward Compatibility (Windows NT 4)

» \Device\Harddisk0\Partition0  \Device\Harddisk0\DR0

 Legacy name (symbolic links)

» \GLOBAL??\PhysicalDrive0  \Device\Harddisk0\DR0

 \\.\PhysicalDriveX for CreateFileA()

» \\.\PhysicalDrive0  \Device\Harddisk0\DR0

» CreateFileA(“\\.\PhysicalDrive0”, ...)

Using WinObj

32

\\.\PhysicalDrive0
\Device\Harddisk0\Partition0
 \Device\Harddisk0\DR0

 \GLOBAL??\PhysicalDrive0
  \Device\Harddisk0\DR0

33

\\.\PhysicalDrive0
• CreateFileA(“\\.\PhysicalDrive0”, ...)
• DeviceIoControl(fileHandle, 0x70048,...)

34

Call to DeviceIoControl()
BOOL

WINAPI

DeviceIoControl(000000A0, // handle to device

 IOCTL_DISK_GET_PARTITION_INFO_EX, // dwIoControlCode

 NULL, // lpInBuffer

 0, // nInBufferSize

 0012F1A0, // output buffer

 144, // size of output buffer

 0012F234, // number of bytes returned

 NULL // OVERLAPPED structure

);

dwIoControlCode:
 0x70048
 IOCTL_DISK_GET_PARTITION_INFO_EX

lpOutBuffer:
 Receives the partition information

 PARTITION_INFORMATION_EX
 Contains partition information for
standard AT-style master boot record (MBR) and
Extensible Firmware Interface (EFI) disks.

35

PARTITION_INFORMATION_EX

typedef struct {

 PARTITION_STYLE PartitionStyle;

 LARGE_INTEGER StartingOffset;

 LARGE_INTEGER PartitionLength;

 DWORD PartitionNumber;

 BOOLEAN RewritePartition;

 union {

 PARTITION_INFORMATION_MBR Mbr;

 PARTITION_INFORMATION_GPT Gpt;

 };

} PARTITION_INFORMATION_EX;

typedef enum _PARTITION_STYLE {

 PARTITION_STYLE_MBR = 0,

 PARTITION_STYLE_GPT = 1,

 PARTITION_STYLE_RAW = 2

} PARTITION_STYLE;

Constants :

PARTITION_STYLE_MBR
 Master boot record (MBR) format. This
corresponds to standard AT-style MBR partitions.
PARTITION_STYLE_GPT
 GUID Partition Table (GPT) format.
PARTITION_STYLE_RAW
 Partition not formatted in either of the
recognized formats—MBR or GPT

dwIoControlCode:
 0x70048
 IOCTL_DISK_GET_PARTITION_INFO_EX

lpOutBuffer:
 Receives the partition information

 PARTITION_INFORMATION_EX
 Contains partition information for
standard AT-style master boot record (MBR)
and Extensible Firmware Interface (EFI) disks.

Using Process Monitor

37

\\.\PhysicalDrive0
• CreateFileA(“\\.\PhysicalDrive0”, ...)
• DeviceIoControl(fileHandle, 0x70048,...)

CreateFileA(“\\.\PhysicalDrive0”, ...)

DeviceIoControl(fileHandle, 0x70048,...)

38

Execution Flow

 New executable image

 .xxxx section

 Bootable disk

 Initial call to DeviceIoControl

 \\.\PhysicalDrive0

 Read, Encrypt, and Overwrite

 Reboots the system to activate the payload

 Payload in a debugger

39

Read, Encrypt, and Overwrite

 Reads a copy of the MBR(sector 0x00)

 A series of instructions for the sector 0x01 to 0x21
» CreateFileA()

» SetFilePointerEx()

» ReadFile()

» CloseHandle()

» XOR with 0x37

» CreateFileA()

» SetFilePointerEx()

» WriteFile()

» CloseHandle()

Writes the new MBR

Writes the small kernel code starting at sector 0x22

40

MBR format

MBR/Sector size is 0x200 bytes
» 0 to 0x1bd: bootstrap

» 0x1be: 1st partition table entry (16 bytes)

» 0x1ce: 2nd partition table entry (16 bytes)

» 0x1de: 3rd partition table entry (16 bytes)

» 0x1ee: 4th partition table entry (16 bytes)

» 0x1fe: 0x55, 0xAA (bootsector marker)

41

Read, Encrypt, and Overwrite

• SetFilePointerEx()
• ReadFile()

Reading the MBR

0x55AA
end of sector marker

Using HDHacker

43

Read, Encrypt, and Overwrite

0x55AA
end of sector marker

Reading the MBR

44

Read, Encrypt, and Overwrite

from Petya

from HDHacker tool

Reading the MBR

45

Read, Encrypt, and Overwrite
A series of instructions for the sector 0x01 to 0x21

XOR with 0x37

CreateFileA()
SetFilePointerEx()

ReadFile()
CloseHandle()

CreateFileA()
SetFilePointerEx()

WriteFile()
CloseHandle()

46

Read, Encrypt, and Overwrite

sector 0x01

sector 0x02

sector 0x03

• CreateFileA(“\\.\PhysicalDrive0”, ...)
• SetFilePointerEx()
• ReadFile()
• Encrypt
 (XOR with 0x37)
• WriteFile()

A series of instructions for the sector 0x01 to 0x21

47

Read, Encrypt, and Overwrite
Writes the new MBR

writes new MBR

original MBR

new MBR

48

Read, Encrypt, and Overwrite
The new MBR

new MBR code

new MBR

49

Two Types Of Partioning

MBR-style
» Standard BIOS

» First sector contains Master Boot Record

» MBR contains the partition table

 GPT (GUID Partition Table)
» UEFI - Unified Extensible Firmware Interface

 UEFI includes a mini–operating system environment implemented in
firmware (typically flash memory)

» UEFI defines a partitioning scheme called GUID
 GUID (globally unique identifier) Partition Table (GPT)

» First sector contains protective MBR

» Second and last sectors stores the GPT headers

50

Read, Encrypt, and Overwrite
Writes the small kernel code starting at sector 0x22

sector 0x22

sector 0x22

sector 0x22
writing 16

sectors

writing 16
sectors

51

Read, Encrypt, and Overwrite
Kernel code starting at sector 0x22

52

Read, Encrypt, and Overwrite
TOR addresses are written at sector 0x36

http://petya37h5tb*****.onion/is5z5X

http://petya5koahts*****.onion/is5z5X

sector 0x36

53

Execution Flow

 New executable image

 .xxxx section

 Bootable disk

 Initial call to DeviceIoControl

 \\.\PhysicalDrive0

 Read, Encrypt, and Overwrite

 Reboots the system to activate the payload

 Payload in a debugger

54

Initial Reboot

 Escalate privilege
» GetCurrentProcess

» OpenProcessToken

» LookupPrivilegeValueA
 SE_SHUTDOWN_NAME

» TEXT("SeShutdownPrivilege")

» OpenProcessToken

» AdjustTokenPrivileges

 Then, the hard reboot
» GetModuleHandle

 (NTDLL.DLL)

» GetProcAddress (“NtRaiseHardError”)

» NtRaiseHardError

NtRaiseHardError

55

Execution Flow

 New executable image

 .xxxx section

 Bootable disk

 Initial call to DeviceIoControl

 \\.\PhysicalDrive0

 Read, Encrypt, and Overwrite

 Reboots the system to activate the payload

 Payload in a debugger

Using Bochs

57

Using Bochs

 Simulates a complete Intel x86 computer

 Runs old DOS apps/games

 Debugs MBR code

 5,831,159 steps/instructions to reach 0x7c00

» MBR/first sector is loaded at 0x7c00

» Bootstrap

 Petya starts at 0x7c00 after the initial reboot

58

Read, Encrypt, and Overwrite
The new MBR

new MBR code

new MBR

59

Using Bochs
The new MBR

new MBR code

new MBR

Registers window

Debug window

Dump window

60

Going back old school

 Petya transfers the mini kernel code to 0x8000

 using INT 0x13, function 0x42

 Initializes video mode using INT 0x10

61

Petya’s first INT call
INT 0x13, function 0x42
Extended Read Sectors From Drive

INT 0x13, function 0x42

size of DAP

of sectors
to be read memory

buffer

starting location of
sectors to be read

offset size description

0x00 1 byte size of DAP = 0x10

0x01 1 byte reserved

0x02-0x03 2 bytes # of sectors to be read

0x04-0x07 4 bytes memory buffer

0x08-0x0f 8 bytes starting location

DAP: Disk Address Packet

values

0x10

0x00

0x0001

0x00008000

0x00000000 00000022

Petya’s code

62

Reading Petya’s kernel code
 Using INT 0x13, function 0x42

 Petya read 200 bytes from sector 0x22 and placed it at 0x8000

 Followed by a series of sector reads to transfer all Petya’s kernel
code to 0x8000 region

63

Executing Petya’s kernel code

 After transferring the kernel code, the malware jumps to
0x8000

64

Challenges of debugging the MBR

 The dumped values are not interactive

 Unable to put comments and labels

 You need to constantly refresh the code window

65

Initial Setup

 Initializes video screen

Set video mode to 80x25
Text with 16 colors

AH = 0x00, AL = 0x03
INT 0x10

Set cursor to invisible

AH = 0x01, CH = 0x26
INT 0x10

66

Initial Setup

 Copies content of MBR to a safe place

Read sector

AH = 0x42, ESI=DAP
INT 0x13

buffer=0x7760

sector 0x00
MBR

67

Initial Setup

 Copies content of sector 0x36

 Contains TOR addresses

Read sector

AH = 0x42, ESI=DAP
INT 0x13

buffer=0x7978

sector 0x36

68

Initial Setup
 Checks if the harddrive is already encrypted

encryption
marker

reads sector 0x36

checks for the encyption
marker

69

Initial Display

70

Initial Display

 Fake FDISK message (int 0x10, ah=0x0e – Write Character)

71

Next,

 Reads again the content of sector 0x36

 Marks the first byte with 0x01 (encryption marker)

 Then, writes the content back to sector 0x36

Write sector

AH = 0x43, ESI=DAP
INT 0x13

Write sector

AH = 0x43, ESI=DAP
INT 0x13

72

Looking for the active partition
 Reads the content of current MBR

 Locates the active partition

 Reads the boot sector of active partition at sector 0x3F(this PC)

sector 0x3F

active partition’s
boot sector

NTFS

73

Looking for the MFT

Master File Table (MFT)

MFT is found in NTFS Boot Sector

 It contains at least one entry for every file

74

Setup For Encryption

 Reads 2 sectors starting at the first MFT entry

 The malware computes for the number of sectors for the entire
MFT table (e.g., 32320)

 Displays the initial counter “CHKDSK is repairing sector ”

“2”

“of”

“32320”

“(”

“0”

“%)”

75

MFT Encryption

 Reads 8 sectors per pass

 Encrypts the sectors and writes them back to the harddrive

8 sectors sector 0x600041

MFT entry MFT entry
(encrypted)

76

MFT Encryption

77

2nd Reboot
 Initializes the video screen

 Reads sector 0x36, and checks the encryption marker

 If it is encrypted, it displays the blinking red skull
» Also uses int 0x10 ah=0x0e (Write Character)

78

2nd Reboot

79

Finale

 Petya: Stage 1
» Copies MBR and mini-kernel code to the harddrive

» Then, initiates reboot

 Petya: Stage 2
» Displays fake FDISK

» Encrypts MFT table

» Initiates 2nd reboot

» Displays ascii skull

» Waits for bitcoin payment

80

Finale

 Tools
» Disk Management

» diskpart

» OllyDbg/x64Dbg

» WinObj

» ProcMon

» HDHacker

» Bochs debugger

Multumesc!

