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About Me 

 Senior Security Researcher 
@ Fortinet 

 22 published articles in Virus 
Bulletin 

 Regular contributor in our 
company blog 
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5.25” 
 360kb and 1.2mb 

3.5” 
1.44mb 

Trivia 

Floppy disks 
First One 

Gigabyte HD 

•IBM 3380 HDA 
•1Gb 
• single hard drive assembly (HDA) 
• announced June 1980 
• 75 pounds 

1Tb 
= 1,024 X  

= 2,048 X  

= 256 X  
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Partition 02 

 
 

Partition 01 

Track 0, Head 0, Sector 1 

credit: internet 
For floppy disk: Boot Sector 

sectors 

For HD: MBR (Master Boot Record) 

sectors sectors 

Cylinder 0, Head 0, Sector 1 

Cylinder 0, Head 0, Sector 1 



Creating MBR and GPT partitions 
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Two Types Of Partioning 

MBR-style 
» Standard BIOS 

» First sector contains Master Boot Record 

» MBR contains the partition table 

 GPT (GUID Partition Table) 
» UEFI - Unified Extensible Firmware Interface 

 UEFI includes a mini–operating system environment implemented in 
firmware (typically flash memory) 

» UEFI defines a partitioning scheme called GUID 
 GUID (globally unique identifier) Partition Table (GPT) 

» First sector contains protective MBR 

» Second and last sectors store the GPT headers 
 



Using Disk Management 
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GPT and MBR-Style Disk 

Initialize the new disk as MBR 
or GPT 

Disk 1 as MBR 

Using Disk Management 

Initialize the new disk as MBR 
or GPT 

Disk 2 as GPT 
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Disk Conversion 

Convert a  
GPT disk to  

MBR 

Convert an  
MBR disk to 

GPT 
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GPT and MBR-Style Partitions 

Creating disk partitions 

MBR can only have  
4 primary partitions 

Extended partitions 

GPT can have unlimited 
number of primary 

partitions 



Using DISKPART 
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Using DISKPART 

Using DISKPART 

* denotes GPT disk 
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GPT and MBR Disk Structure 

Master Boot Record 

MBR Disk 
CHS 

C = 0, H = 0, S = 1 

GPT Disk 
LBA 

LBA 0 

Cylinder-Head-Sector Addressing 

Partition 1 Partition 2 Partition n ... 

Partition 1 Partition 2 Partition 3 

Partition 4 

Logical Block Addressing 

LBA CHS 

0 0,0,1 

1 0,0,2 

2 0,0,3 

3 0,0,4 

62 0,0,63 

63 0,1,1 

64 0,1,2 

125 0,1,63 

1024 1,0,17 

1147 1,2,14 

2017 2,0,2 Partition Table Header 

LBA 1 LBA n 

16 heads per cylinder 

Partition 3 

Logical Partitions 



Petya 
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Execution Flow 

 New executable image 

 .xxxx section 

 Bootable disk 

 Initial call to DeviceIoControl 

 \\.\PhysicalDrive0 

 Read, Encrypt, and Overwrite 

 Reboots the system to activate the payload 

 Payload in a debugger 
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New Executable Image 

•The new executable image is decrypted with the following codes 
• Each pass only decrypts a DWORD value 

start of pass 

end of pass 
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New Executable Image 

• checks if it is a valid executable image, with 
proper MZ/PE marker 
 

start of pass 

end of pass 
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New Executable Image 

• resolves GetProcAddress, LoadLibraryA, and VirtualAlloc APIs by 
comparing the hashed values of the different APIs in kernel32 library 

hashed values API 

7C0DFCAA GetProcAddress 

EC0E4E8E LoadLibraryA 

91AFCA54 VirtualAlloc 
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New Executable Image 

• allocates new virtual memory using VirtualAlloc 
• copies the new image to the new virtual memory, section by section 
• resolves APIs using the GetProcAddress 

new memory location 

API names 

API address 

API addresses 
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Execution Flow 

 New executable image 

 .xxxx section 

 Bootable disk 

 Initial call to DeviceIoControl 

 \\.\PhysicalDrive0 

 Read, Encrypt, and Overwrite 

 Reboots the system to activate the payload 

 Payload in a debugger 

 

 



21 

.xxxx section 

• locates and decrypts .xxxx section 

00300838 

00300838 

decrypted 

encrypted 

.xxxx 
section 

XOR decryptor 
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Execution Flow 

 New executable image 

 .xxxx section 

 Bootable disk 

 Initial call to DeviceIoControl 

 \\.\PhysicalDrive0 

 Read, Encrypt, and Overwrite 

 Reboots the system to activate the payload 

 Payload in a debugger 
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Bootable Disk 

• locates bootable disk 
• terminates if the malware can’t open drive C: 

logical drive 

logical drive 

terminates 
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CreateFile() 

 - to open a physical or logical drive 
 - use FILE_SHARE_READ and FILE_SHARE_WRITE flag  

logical drive 

physical drive 

• Logical Drive 
 \\.\C:  
 hard drive partition letter, e.g. drive C: 
 
• Physical Drive 
 \\.\PhysicalDrive0  
 physical drive are represented as \\.\PhysicalDriveX,  
 where X is 0,1,2 
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Execution Flow 

 New executable image 

 .xxxx section 

 Bootable disk 

 Initial call to DeviceIoControl 

 \\.\PhysicalDrive0 

 Read, Encrypt, and Overwrite 

 Reboots the system to activate the payload 

 Payload in a debugger 
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DeviceIoControl() 

 
 Sends a control code directly to a specified device driver, causing the 
 corresponding device to perform the corresponding operation. 
 
Syntax: 

 

BOOL WINAPI DeviceIoControl( 

  _In_        HANDLE       hDevice, 

  _In_        DWORD        dwIoControlCode, 

  _In_opt_    LPVOID       lpInBuffer, 

  _In_        DWORD        nInBufferSize, 

  _Out_opt_   LPVOID       lpOutBuffer, 

  _In_        DWORD        nOutBufferSize, 

  _Out_opt_   LPDWORD      lpBytesReturned, 

  _Inout_opt_ LPOVERLAPPED lpOverlapped 

); 
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Initial call to DeviceIoControl() 
BOOL  

WINAPI  

DeviceIoControl( 000000A0,                      // handle to device 

                 IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS,  // dwIoControlCode 

                 NULL,                                  // lpInBuffer 

                 0,                                     // nInBufferSize 

                 0012F218,                       // output buffer 

                 32,                       // size of output buffer 

                 0,                     // number of bytes returned 

                 NULL                 // OVERLAPPED structure 

); 

 

dwIoControlCode: 
 0x560000 
 IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS 
 
lpOutBuffer: 
 A pointer to a buffer that receives a 
VOLUME_DISK_EXTENTS structure that specifies the 
physical location of the disk. 
 
 VOLUME_DISK_EXTENTS structure 
  Represents a physical location on a disk.  
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Bootable Disk 

logical drive 

logical drive 

terminates 

the initial calls to CreateFileA() and DeviceIoControl() are 
used to check if the drive C: is accessible 
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Execution Flow 

 New executable image 

 .xxxx section 

 Bootable disk 

 Initial call to DeviceIoControl 

 \\.\PhysicalDrive0 

 Read, Encrypt, and Overwrite 

 Reboots the system to activate the payload 

 Payload in a debugger 
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\\.\PhysicalDrive0 

 Disk Device Objects created by Windows disk class 

driver 

» \Device\HarddiskX\DRX 

 \Device\Harddisk0\DR0 

 \Device\Harddisk0\DR1 

 Backward Compatibility (Windows NT 4) 

» \Device\Harddisk0\Partition0  \Device\Harddisk0\DR0 

 Legacy name (symbolic links) 

» \GLOBAL??\PhysicalDrive0  \Device\Harddisk0\DR0 

 \\.\PhysicalDriveX for CreateFileA() 

» \\.\PhysicalDrive0  \Device\Harddisk0\DR0 

» CreateFileA(“\\.\PhysicalDrive0”, ...) 

 

 



Using WinObj 
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\\.\PhysicalDrive0 
\Device\Harddisk0\Partition0  
      \Device\Harddisk0\DR0 

         \GLOBAL??\PhysicalDrive0  
          \Device\Harddisk0\DR0 
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\\.\PhysicalDrive0 
• CreateFileA(“\\.\PhysicalDrive0”, ...) 
• DeviceIoControl(fileHandle, 0x70048,...) 
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Call to DeviceIoControl() 
BOOL  

WINAPI  

DeviceIoControl( 000000A0,                      // handle to device 

       IOCTL_DISK_GET_PARTITION_INFO_EX,   // dwIoControlCode 

                 NULL,                                  // lpInBuffer 

                 0,                                     // nInBufferSize 

                 0012F1A0,                       // output buffer 

                 144,                      // size of output buffer 

       0012F234,             // number of bytes returned 

                 NULL                 // OVERLAPPED structure 

); 

 

dwIoControlCode: 
 0x70048 
  IOCTL_DISK_GET_PARTITION_INFO_EX 
 
lpOutBuffer: 
  Receives the partition information 
 
  PARTITION_INFORMATION_EX 
   Contains partition information for 
standard AT-style master boot record (MBR) and 
Extensible Firmware Interface (EFI) disks.  
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PARTITION_INFORMATION_EX 

typedef struct { 

  PARTITION_STYLE PartitionStyle; 

  LARGE_INTEGER   StartingOffset; 

  LARGE_INTEGER   PartitionLength; 

  DWORD           PartitionNumber; 

  BOOLEAN         RewritePartition; 

  union { 

    PARTITION_INFORMATION_MBR Mbr; 

    PARTITION_INFORMATION_GPT Gpt; 

  }; 

} PARTITION_INFORMATION_EX; 

typedef enum _PARTITION_STYLE {  

  PARTITION_STYLE_MBR  = 0, 

  PARTITION_STYLE_GPT  = 1, 

  PARTITION_STYLE_RAW  = 2 

} PARTITION_STYLE; 

Constants : 
 
PARTITION_STYLE_MBR  
  Master boot record (MBR) format. This 
corresponds to standard AT-style MBR partitions. 
PARTITION_STYLE_GPT 
 GUID Partition Table (GPT) format. 
PARTITION_STYLE_RAW 
 Partition not formatted in either of the 
recognized formats—MBR or GPT 
 
 
 
 

dwIoControlCode: 
 0x70048 
  IOCTL_DISK_GET_PARTITION_INFO_EX 
 
lpOutBuffer: 
  Receives the partition information 
 
  PARTITION_INFORMATION_EX 
   Contains partition information for 
standard AT-style master boot record (MBR) 
and Extensible Firmware Interface (EFI) disks.  
 



Using Process Monitor 
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\\.\PhysicalDrive0 
• CreateFileA(“\\.\PhysicalDrive0”, ...) 
• DeviceIoControl(fileHandle, 0x70048,...) 

CreateFileA(“\\.\PhysicalDrive0”, ...) 

DeviceIoControl(fileHandle, 0x70048,...) 
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Execution Flow 

 New executable image 

 .xxxx section 

 Bootable disk 

 Initial call to DeviceIoControl 

 \\.\PhysicalDrive0 

 Read, Encrypt, and Overwrite 

 Reboots the system to activate the payload 

 Payload in a debugger 
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Read, Encrypt, and Overwrite 

 Reads a copy of the MBR(sector 0x00) 

 A series of instructions for the sector 0x01 to 0x21 
» CreateFileA() 

» SetFilePointerEx() 

» ReadFile() 

» CloseHandle() 

» XOR with 0x37 

» CreateFileA() 

» SetFilePointerEx() 

» WriteFile() 

» CloseHandle() 

Writes the new MBR 

Writes the small kernel code starting at sector 0x22  
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MBR format 

MBR/Sector size is 0x200 bytes 
» 0 to 0x1bd: bootstrap 

» 0x1be: 1st partition table entry (16 bytes) 

» 0x1ce: 2nd partition table entry (16 bytes) 

» 0x1de: 3rd partition table entry (16 bytes) 

» 0x1ee: 4th partition table entry (16 bytes) 

» 0x1fe: 0x55, 0xAA (bootsector marker) 
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Read, Encrypt, and Overwrite 

• SetFilePointerEx()  
• ReadFile() 

Reading the MBR 

0x55AA  
end of sector marker 



Using HDHacker 
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Read, Encrypt, and Overwrite 

0x55AA  
end of sector marker 

Reading the MBR 
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Read, Encrypt, and Overwrite 

from Petya 

from HDHacker tool 

Reading the MBR 
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Read, Encrypt, and Overwrite 
A series of instructions for the sector 0x01 to 0x21 

XOR with 0x37 

CreateFileA() 
SetFilePointerEx() 

ReadFile() 
CloseHandle() 

CreateFileA() 
SetFilePointerEx() 

WriteFile() 
CloseHandle() 
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Read, Encrypt, and Overwrite 

sector 0x01 

sector 0x02 

sector 0x03 

• CreateFileA(“\\.\PhysicalDrive0”, ...) 
• SetFilePointerEx() 
• ReadFile() 
• Encrypt  
   ( XOR with 0x37 ) 
• WriteFile() 

A series of instructions for the sector 0x01 to 0x21 
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Read, Encrypt, and Overwrite 
Writes the new MBR 

writes new MBR 

original MBR 

new MBR 
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Read, Encrypt, and Overwrite 
The new MBR 

new MBR code 

new MBR 
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Two Types Of Partioning 

MBR-style 
» Standard BIOS 

» First sector contains Master Boot Record 

» MBR contains the partition table 

 GPT (GUID Partition Table) 
» UEFI - Unified Extensible Firmware Interface 

 UEFI includes a mini–operating system environment implemented in 
firmware (typically flash memory) 

» UEFI defines a partitioning scheme called GUID 
 GUID (globally unique identifier) Partition Table (GPT) 

» First sector contains protective MBR 

» Second and last sectors stores the GPT headers 
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Read, Encrypt, and Overwrite 
Writes the small kernel code starting at sector 0x22 

sector 0x22 

sector 0x22 

sector 0x22 
writing 16 

sectors 

writing 16 
sectors 
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Read, Encrypt, and Overwrite 
Kernel code starting at sector 0x22 
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Read, Encrypt, and Overwrite 
TOR addresses are written at sector 0x36 

http://petya37h5tb*****.onion/is5z5X 

http://petya5koahts*****.onion/is5z5X 

sector 0x36 
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Execution Flow 

 New executable image 

 .xxxx section 

 Bootable disk 

 Initial call to DeviceIoControl 

 \\.\PhysicalDrive0 

 Read, Encrypt, and Overwrite 

 Reboots the system to activate the payload 

 Payload in a debugger 
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Initial Reboot 

 Escalate privilege 
» GetCurrentProcess 

» OpenProcessToken 

» LookupPrivilegeValueA 
 SE_SHUTDOWN_NAME 

» TEXT("SeShutdownPrivilege") 

» OpenProcessToken 

» AdjustTokenPrivileges 

 Then, the hard reboot 
» GetModuleHandle  

 (NTDLL.DLL) 

» GetProcAddress (“NtRaiseHardError”) 

» NtRaiseHardError 

NtRaiseHardError 
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Execution Flow 

 New executable image 

 .xxxx section 

 Bootable disk 

 Initial call to DeviceIoControl 

 \\.\PhysicalDrive0 

 Read, Encrypt, and Overwrite 

 Reboots the system to activate the payload 

 Payload in a debugger 

 



Using Bochs 
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Using Bochs 

 Simulates a complete Intel x86 computer 

 Runs old DOS apps/games 

 Debugs MBR code 

 5,831,159 steps/instructions to reach 0x7c00 

» MBR/first sector is loaded at 0x7c00 

» Bootstrap 

 Petya starts at 0x7c00 after the initial reboot  
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Read, Encrypt, and Overwrite 
The new MBR 

new MBR code 

new MBR 
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Using Bochs 
The new MBR 

new MBR code 

new MBR 

Registers window 

Debug window 

Dump window 
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Going back old school 

 Petya transfers the mini kernel code to 0x8000  

  using INT 0x13, function 0x42 

 Initializes video mode using INT 0x10 
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Petya’s first INT call 
INT 0x13, function 0x42  
Extended Read Sectors From Drive  

INT 0x13, function 0x42 

size of DAP 

# of sectors  
to be read memory 

buffer 

starting location of 
sectors  to be read 

offset size description 

0x00 1 byte size of DAP = 0x10 

0x01 1 byte reserved 

0x02-0x03 2 bytes # of sectors to be read 

0x04-0x07 4 bytes memory buffer 

0x08-0x0f 8 bytes starting location 

DAP: Disk Address Packet 

values 

0x10 

0x00 

0x0001 

0x00008000 

0x00000000 00000022 

Petya’s code 
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Reading Petya’s kernel code 
 Using INT 0x13, function 0x42 

 Petya read 200 bytes from sector 0x22 and placed it at 0x8000 

 Followed by a series of sector reads to transfer all Petya’s kernel 
code to 0x8000 region 
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Executing Petya’s kernel code 

 After transferring the kernel code, the malware jumps to 
0x8000 
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Challenges of debugging the MBR 

 The dumped values are not interactive 

 Unable to put comments and labels 

 You need to constantly refresh the code window  
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Initial Setup 

 Initializes video screen 

Set video mode to 80x25 
Text with 16 colors 
 
AH = 0x00, AL = 0x03 
INT 0x10 

Set cursor to invisible 
 
AH = 0x01, CH = 0x26 
INT 0x10 
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Initial Setup 

 Copies content of MBR to a safe place 

 

Read sector 
 
AH = 0x42, ESI=DAP 
INT 0x13 

buffer=0x7760 

sector 0x00 
MBR 
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Initial Setup 

 Copies content of sector 0x36  

 Contains TOR addresses 

 

Read sector 
 
AH = 0x42, ESI=DAP 
INT 0x13 

buffer=0x7978 

sector 0x36 
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Initial Setup 
 Checks if the harddrive is already encrypted 

 

encryption 
marker 

reads sector 0x36 

checks for the encyption 
marker 
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Initial Display 
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Initial Display 

 Fake FDISK message (int 0x10, ah=0x0e – Write Character) 
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Next, 

 Reads again the content of sector 0x36 

 Marks the first byte with 0x01 (encryption marker) 

 Then, writes the content back to sector 0x36 

 

 

 

 

 
Write sector 
 
AH = 0x43, ESI=DAP 
INT 0x13 

Write sector 
 
AH = 0x43, ESI=DAP 
INT 0x13 
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Looking for the active partition 
 Reads the content of current MBR 

 Locates the active partition 

 Reads the boot sector of active partition at sector 0x3F(this PC) 

 

 

sector 0x3F 

active  partition’s 
boot sector 

NTFS 
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Looking for the MFT 

Master File Table (MFT) 

MFT is found in NTFS Boot Sector 

 It contains at least one entry for every file 
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Setup For Encryption 
 

 

 Reads 2 sectors starting at the first MFT entry 

 The malware computes for the number of sectors for the entire 
MFT table (e.g., 32320) 

 Displays the initial counter “CHKDSK  is repairing sector ” 

“2” 

“of” 

“32320” 

“(” 

“0” 

“%)” 
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MFT Encryption 
 

 

 Reads 8 sectors per pass 

 Encrypts the sectors and writes them back to the harddrive 

8 sectors sector 0x600041 

MFT entry MFT entry  
(encrypted) 
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MFT Encryption 
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2nd Reboot 
 Initializes the video screen 

 Reads sector 0x36, and checks the encryption marker 

 If it is encrypted, it displays the blinking red skull 
» Also uses int 0x10 ah=0x0e (Write Character) 
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2nd Reboot 
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Finale 

 Petya: Stage 1 
» Copies MBR and mini-kernel code to the harddrive 

» Then, initiates reboot 

 

 Petya: Stage 2 
» Displays fake FDISK 

» Encrypts MFT table 

» Initiates 2nd reboot 

» Displays ascii skull 

» Waits for bitcoin payment 
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Finale 

 Tools 
» Disk Management 

» diskpart 

» OllyDbg/x64Dbg 

» WinObj 

» ProcMon 

» HDHacker 

» Bochs debugger 

 

 

 



Multumesc! 




