
1

Keeping customer data safe
in EC2 – a deep dive

Martin Pohlack

Amazon Web Services

2

Bio ...

 Principal Engineer with Amazon Web Services

 I like to play with

 Low-level stuff

 Synchronization, hardware transactional memory

 Virtualization

 Real-time systems, micro-kernel systems

 Reactive security

3

Keeping customer data safe

 Security is tenet #1 in AWS

 Focus: issues in Xen virtualization stack

 Example: a Xen security advisory

4

Xen Security Advisory CVE-2015-2151 / XSA-123

Hypervisor memory corruption due to x86 emulator flaw

*** EMBARGOED UNTIL 2015-03-10 12:00 UTC ***

ISSUE DESCRIPTION

Instructions with register operands ignore eventual segment

Overrides encoded for them. Due to an insufficiently

conditional assignment such a bogus segment override can,

however, corrupt a pointer [...]

IMPACT

A malicious guest might be able to read sensitive data

relating to other guests, or to cause denial of service on

the host. Arbitrary code execution, and therefore privilege

escalation, cannot be excluded.

VULNERABLE SYSTEMS: Xen 3.2.x and later are vulnerable.

MITIGATION: There is no mitigation available for this issue.

RESOLUTION: xsa123-4.3-4.2.patch Xen 4.3.x, Xen 4.2.x

5

List of all XSAs

6

Components

 Xen virtualization stack

 Xen hypervisor

 QEMU

 Dom0 Linux kernel

 ...

7

DomU 1

DomU 2

DomU 3

Dom0

Xen

8

Security response options

 Vendor-specific options

 Configuration changes

 Patch and reboot

 Live migration

 Hot patching

9

Security & availability: How?

Hot patching [...] is the application of patches
without shutting down and restarting the system [...].
This addresses problems related to unavailability of
services [...].

https://en.wikipedia.org/wiki/Patch_(computing)#Hot_patching

10

Already solved?

• R. Wojtczuk: Subverting the Xen hypervisor.

Black Hat USA '08

• J. Arnold, M. F. Kaashoek: Ksplice: Automatic Rebootless

Kernel Updates. EuroSys '09

• kPatch (Redhat) +

kgraft (SUSE) -> Linux livepatch (2014)

• Xen 4.7: Xen live patch, experimental (2016)

Xen 4.9: supported on x86 (2017)

11

Target host

Xen

Building blocks

Hot-patch
construction

Injection
into Xen

Activation: Splicing
into active Xen code

12

Xen under the hood ...

13

Splicing, what?

14

Splicing, how?

xsa-123.mod:

701000 <new_fn>:
701000: 55 push %rbp
701001: 48 89 e5 mov %rsp,%rbp
701004: 48 83 ec 10 sub $0x10,%rsp

...
jne <target1>

...

400544 <old_fn>:
400544: 55 push %rbp
400545: 48 89 e5 mov %rsp,%rbp
400548: 48 83 ec 10 sub $0x10,%rsp

...
je <target1>

...

E9 ???????? jmpq <new_fn>

15

Splicing, when?

• Patch targets quiet

• Atomically

16

CPU stacks and function calls

1000 <f1>:

...

1010: call 2000 <f2>
1015: mov ...

...

2000 <f2>:
2000: ...

...

2100: ret

1234

Stack

1015

...

17

Splicing, when (2)?

• Patch targets quiet

• Atomically

• No permanent threads, stacks not preserved

• Global barrier at hypervisor exit

• Timeout & retry
init entering

spliceleaving

timeout

18

Hot-patch construction

19

xsaN.patch

Hotpatch module
xsaN.xko

Original Xen tree Apply patch Patched Xen tree

Link,
resolve symbols

build

xsaN_stub.o

module_init()
module_exit()

metadata

Generate
module stub

List of
changed objects

List of
changed
functions

Identify changed
functions

build ID

Elf / linker magic:
globalize symbols,

externalize symbols,
strip unneeded sections

(.data, …),
resolve against xen-syms

Objects with
fixed code

build build
Compare

trees

20

Generated module stubs

 Hot-patch frameworks: list of locations to patch

 Evaluated by code in target

 Time to develop vs. time to use

 Unforeseen requirements and situations

 Data transformations

 Run-once code for transformations or cleanups

 Handle runtime issues

 Generate init() / exit() code

 Risk-limiting design

21

Reproducible builds

22

Same input → same output

 Source code

 Tool set & environment
(build system)

 Build path

 Time & hostname

 make -j

 “Normative part” of binary

23

Same input → same output

 Source code

 Tool set & environment
(build system)

 Build path

 Time & hostname

 make -j

 “Normative part” of binary

24

Summary

 Hot-patching versatile reaction tool

 Enables to protect customer data

 Security and availability

 Risk-limiting design → future-proof

25

aws.amazon.com/careers

26

By Johannes Bader CC BY 2.0, https://www.flickr.com/photos/johannesbader/4386559580

By Shisma - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32027358

By Stinging Eyes, Weighted Dice, https://www.flickr.com/photos/martinlatter/3440725043
https://creativecommons.org/licenses/by-sa/2.0/

By Mooganic - CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=9086436

https://www.flickr.com/photos/johannesbader/4386559580
https://commons.wikimedia.org/w/index.php?curid=32027358
https://www.flickr.com/photos/martinlatter/3440725043
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/w/index.php?curid=9086436

