Keeping customer data safe in EC2 – a deep dive

Martin Pohlack

Amazon Web Services

Rated PG13: mbly

Bio ...

- Principal Engineer with Amazon Web Services
- I like to play with
 - Low-level stuff
 - Synchronization, hardware transactional memory
 - Virtualization
 - Real-time systems, micro-kernel systems
 - Reactive security

Keeping customer data safe

- Security is tenet #1 in AWS
- Focus: issues in Xen virtualization stack
- Example: a Xen security advisory

Xen Security Advisory CVE-2015-2151 / XSA-123
Hypervisor memory corruption due to x86 emulator flaw
*** EMBARGOED UNTIL 2015-03-10 12:00 UTC ***

ISSUE DESCRIPTION

Instructions with register operands ignore eventual segment Overrides encoded for them. Due to an *insufficiently* conditional assignment such a bogus segment override can, however, corrupt a pointer [...]

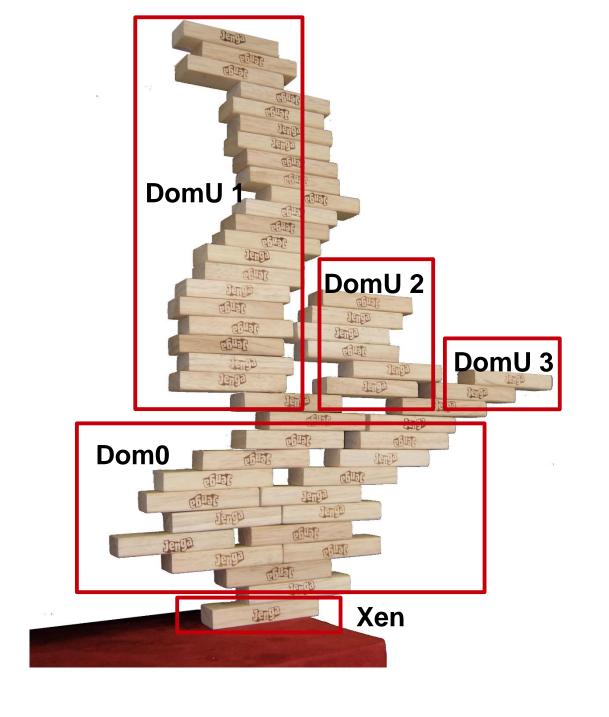
<u>IMPACT</u>

A malicious guest might be able to **read sensitive data** relating to other guests, or to cause **denial of service** on the host. Arbitrary code execution, and therefore **privilege escalation**, **cannot be excluded**.

<u>VULNERABLE SYSTEMS:</u> Xen 3.2.x and later are vulnerable.

MITIGATION: There is no mitigation available for this issue.

RESOLUTION: xsa123-4.3-4.2.patch Xen 4.3.x, Xen 4.2.x


Advisories, publicly released or pre-released

All times are in UTC. For general information about Xen and security see the Xen Project website and security policy.

Advisory	Public release	Updated	Version	CVE(s)	Title
XSA-245	2017-09-28 17:26 2017	7-09-28 17:26	1	none (yet) assigned	ARM: Some memory not scrubbed at boot
XSA-244	2017-10-12 12:00			none (yet) assigned	(Prereleased, but embargoed)
XSA-243	2017-10-12 12:00			none (yet) assigned	(Prereleased, but embargoed)
XSA-242	2017-10-12 12:00			none (yet) assigned	(Prereleased, but embargoed)
XSA-241	2017-10-12 12:00			none (yet) assigned	(Prereleased, but embargoed)
XSA-240	2017-10-12 12:00			none (yet) assigned	(Prereleased, but embargoed)
XSA-239	2017-10-12 12:00			none (yet) assigned	(Prereleased, but embargoed)
XSA-238	2017-10-12 12:00			none (yet) assigned	(Prereleased, but embargoed)
XSA-237	2017-10-12 12:00			none (yet) assigned	(Prereleased, but embargoed)
XSA-236	2017-10-24 12:00			none (yet) assigned	(Prereleased, but embargoed)
XSA-235	2017-08-23 15:16 2017	7-08-23 15:16	1	none (yet) assigned	add-to-physmap error paths fail to release lock on ARM
XSA-234	2017-09-12 12:00 2017	7-09-12 12:03	3	CVE-2017-14319	insufficient grant unmapping checks for x86 PV guests
XSA-233	2017-09-12 12:00 2017	7-09-12 12:03	3	<u>CVE-2017-14317</u>	cxenstored: Race in domain cleanup
XSA-232	2017-09-12 12:00 2017	7-09-12 12:03	4	CVE-2017-14318	Missing check for grant table
XSA-231	2017-09-12 12:00 2017	7-09-12 12:03	3	CVE-2017-14316	Missing NUMA node parameter verification
	2017-08-15 12:00 2017			CVE-2017-12855	grant_table: possibly premature clearing of GTF_writing / GTF_reading
XSA-229	2017-08-15 12:00 2017	7-08-15 12:04	3	CVE-2017-12134	linux: Fix Xen block IO merge-ability calculation
XSA-228	2017-08-15 12:00 2017	7-08-15 12:04	3	CVE-2017-12136	grant_table: Race conditions with maptrack free list handling
XSA-227	2017-08-15 12:00 2017	7-08-15 12:04	3	<u>CVE-2017-12137</u>	x86: PV privilege escalation via map_grant_ref
XSA-226	2017-08-15 12:00 2017	7-08-29 12:03	7	CVE-2017-12135	multiple problems with transitive grants
XSA-225	2017-06-20 11:58 2017	7-07-07 13:52	3	CVE-2017-10923	arm: vgic: Out-of-bound access when sending SGIs
XSA-224	2017-06-20 11:58 2017	7-07-07 13:52	5	CVE-2017-10920 CVE-2017-10921 CVE-2017-10922	grant table operations mishandle reference counts
XSA-223	2017-06-20 11:58 2017	7-07-07 13:52	3	CVE-2017-10919	ARM guest disabling interrupt may crash Xen
XSA-222	2017-06-20 11:58 2017	7-07-07 13:52	3	CVE-2017-10918	stale P2M mappings due to insufficient error checking
	2017-06-20 11:58 2017			CVE-2017-10917	NULL pointer deref in event channel poll
XSA-220	2017-06-20 11:58 2017	7-07-07 13:52	3	CVE-2017-10916	x86: PKRU and BND* leakage between vCPU-s
XSA-219	2017-06-20 11:58 2017	7-07-07 13:52	3	CVE-2017-10915	x86: insufficient reference counts during shadow emulation
XSA-218	2017-06-20 12:00 2017	7-07-07 13:52	5	CVE-2017-10913 CVE-2017-10914	Races in the grant table unmap code
	2017-06-20 11:58 2017			CVE-2017-10912	page transfer may allow PV guest to elevate privilege
XSA-216	2017-06-20 11:58 2017	7-07-07 13:52	5	CVE-2017-10911	blkif responses leak backend stack data
XSA-215	2017-05-02 11:18 2017	7-05-12 10:44	3	<u>CVE-2017-8905</u>	possible memory corruption via failsafe callback
XSA-214	2017-05-02 11:18 2017	7-05-12 10:44	3	<u>CVE-2017-8904</u>	grant transfer allows PV guest to elevate privileges
XSA-213	2017-05-02 11:18 2017	7-05-12 10:44	3	CVE-2017-8903	x86: 64bit PV guest breakout via pagetable use-after-mode-change
XSA-212	2017-04-04 12:00 2017	7-04-04 12:37	3	CVE-2017-7228	x86: broken check in memory_exchange() permits PV guest breakout
XSA-211	2017-03-14 11:58 2017	7-03-14 11:58		CVE-2016-9603	Cirrus VGA Heap overflow via display refresh
	2017-02-23 16:28 2017			none (yet) assigned	arm: memory corruption when freeing p2m pages
XSA-209	2017-02-21 10:42 2017	7-02-23 15:52	4	CVE-2017-2620	cirrus_bitblt_cputovideo does not check if memory region is safe
XSA-208	2017-02-10 12:43 2013	7-02-13 18:13	2	CVE-2017-2615	oob access in cirrus bitblt conv

Components

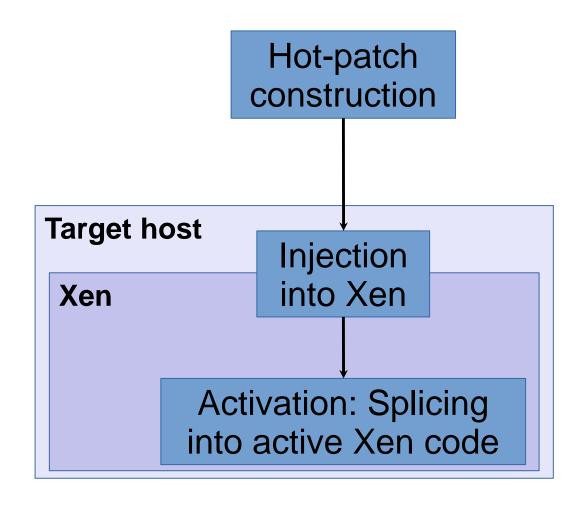
- Xen virtualization stack
 - Xen hypervisor
 - QEMU
 - Dom0 Linux kernel
 - ...

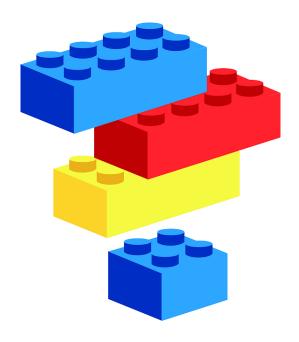
Security response options

- Vendor-specific options
- Configuration changes
- Patch and reboot
- Live migration
- Hot patching

Security & availability: How?

Hot patching [...] is the application of patches without shutting down and restarting the system [...]. This addresses problems related to unavailability of services [...].


https://en.wikipedia.org/wiki/Patch_(computing)#Hot_patching


Already solved?

- R. Wojtczuk: Subverting the Xen hypervisor. Black Hat USA '08
- J. Arnold, M. F. Kaashoek: *Ksplice: Automatic Rebootless Kernel Updates. EuroSys '09*

- kPatch (Redhat) + kgraft (SUSE) -> Linux livepatch (2014)
- Xen 4.7: Xen live patch, experimental (2016)
 Xen 4.9: supported on x86 (2017)

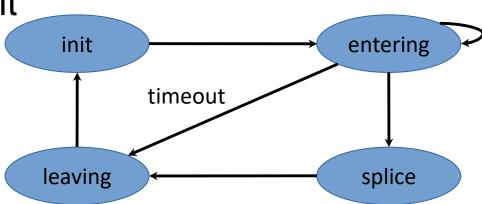
Building blocks

Xen under the hood ...

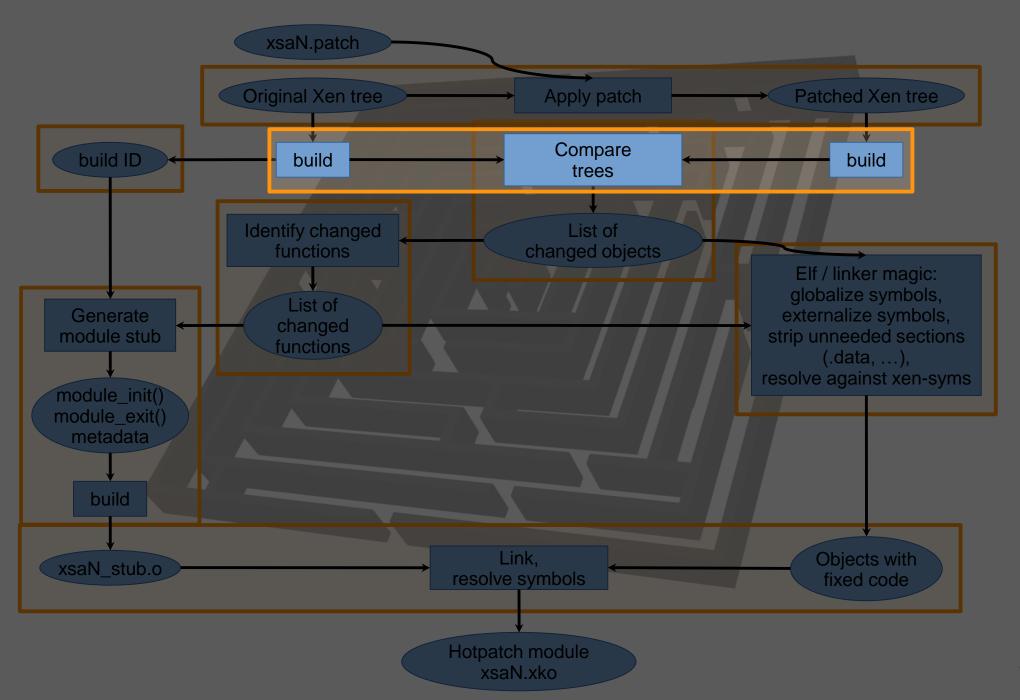
Splicing, what?

Splicing, how?

Splicing, when?


- Patch targets quiet
- Atomically

CPU stacks and function calls


Splicing, when (2)?

- Patch targets quiet
- Atomically
- No permanent threads, stacks not preserved
- Global barrier at hypervisor exit
- Timeout & retry

Hot-patch construction

Generated module stubs

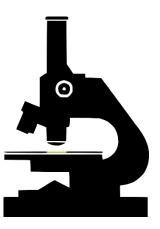
- Hot-patch frameworks: list of locations to patch
 - Evaluated by code in target
- Time to develop vs. time to use
- Unforeseen requirements and situations
 - Data transformations
 - Run-once code for transformations or cleanups
 - Handle runtime issues
- Generate init() / exit() code
 - Risk-limiting design

Reproducible builds

Same input → same output

- Source code
- Tool set & environment (build system)
- Build path
- Time & hostname
- make -j

"Normative part" of binary


Same input → same output

- Source code
- Tool set & environment (build system)
- Build path
- Time & hostname
- make -j

"Normative part" of binary

Summary

- Hot-patching versatile reaction tool
- Enables to protect customer data
- Security and availability
- Risk-limiting design → future-proof

aws.amazon.com/careers

By Johannes Bader CC BY 2.0, https://www.flickr.com/photos/johannesbader/4386559580

By Shisma - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32027358

By Stinging Eyes, Weighted Dice, https://creativecommons.org/licenses/by-sa/2.0/

By Mooganic - CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=9086436