Efficient Defenses Against Adversarial Examples for Deep Neural Networks

Irina Nicolae IBM Research Al

DefCamp

November 10, 2017

So far...

- Machine learning for security
 - Intrusion detection¹
 - Malware analysis²

This talk is about

Security for machine learning

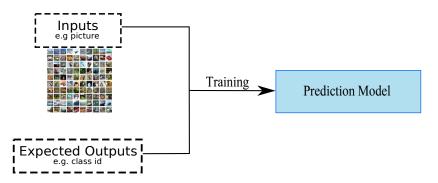
Information Security, 5, 56-64, 2014.

¹Buczak & Guven, *A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection.* IEEE Comunications Surveys & Tutorials, 2015. ²Gandotra et al., *Malware Analysis and Classification: A Survey*, Journal of

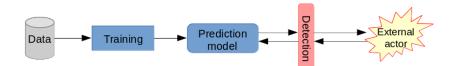
IBM

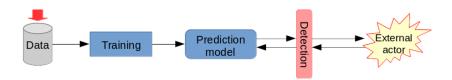
Machine Learning and Security

Training



Prediction



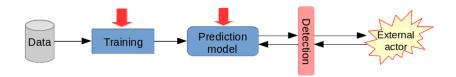


Data security

• Compromise privacy and integrity

Defenses

• Secure data access

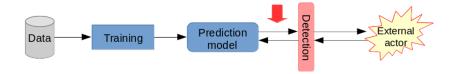


Model security

- Poisoning attacks
- · Prediction model theft

Defenses

- Data curation
- Differential privacy

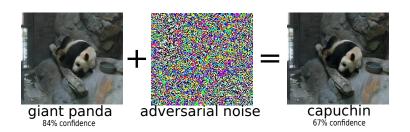


Model behavior

- Evasion attacks adversarial examples
- Denial of service

Defenses

- Model hardening
- Anomaly detection



- Perturb model inputs with crafted noise
- Model fails to recognize input correctly
- · Attack undetectable by humans
- Random noise does not work.

IBM

Practical Examples of Attacks

Image segmentation³

Attack noise hides pedestrians from the detection system.

³Metzen et al., *Universal Adversarial Perturbations Against Semantic Image Segmentation*. https://arxiv.org/abs/1704.05712.

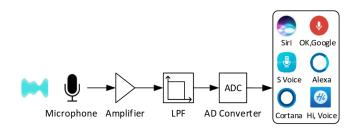
Road signs⁴

Car ends up ignoring the stop sign.

True image

Adversarial image

⁴McDaniel et al., *Machine Learning in Adversarial Settings*. IEEE Security and Privacy, vol. 14, pp. 68-72, 2016.

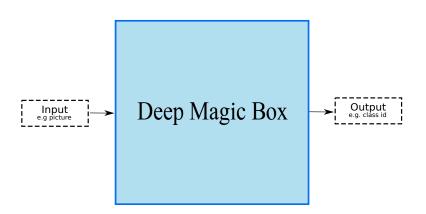


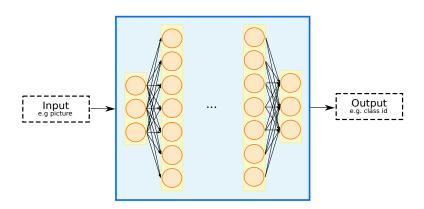
Okay Google, text John!⁵

- Stealthy voice commands recognized by devices
- Humans cannot detect it.

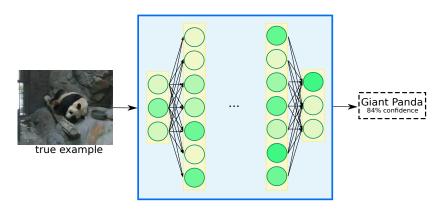
⁵Zhang et al., *DolphinAttack: Inaudible Voice Commands*, ACM CC 2017

Deep Learning and Adversarial Samples

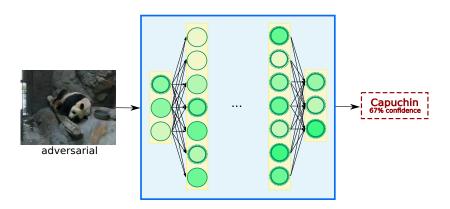




- Interconnected layers propagate the information forward.
- Model learns weights for each neuron.

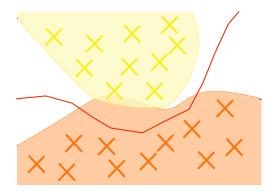


- Specific neurons light-up depending on the input.
- Cumulative effect of activation moves forward in the layers.

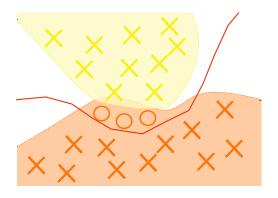


Small variations in the input \rightarrow important changes in the output.

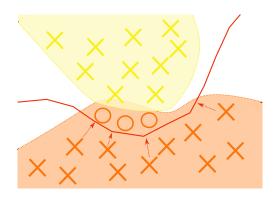
- + Enhanced discriminative capacities
- Opens the door to adversarial examples



The **learned model** slightly differs from the **true** data distribution...



... which makes room for adversarial examples.

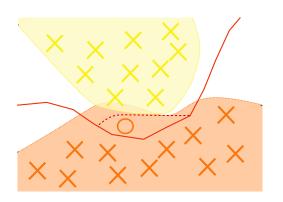


Idea Push examples over the classification boundary

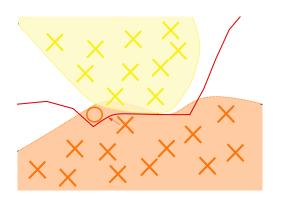
- FGSM [4], Random + FGSM [5]
- JSMA [7]

• DeepFool [6]

• C&W [8]



- Adversarial training, virtual adversarial training (VAT) [1] \rightarrow need retraining
- Feature squeezing (FS) [2]
- Label smoothing (LS) [3]



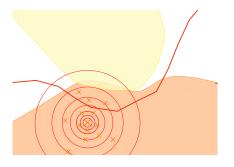
- Adversarial training, virtual adversarial training (VAT) [1] \rightarrow need retraining
- Feature squeezing (FS) [2]
- Label smoothing (LS) [3]

IBM

Gaussian Data Augmentation

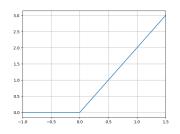
Gaussian Data Augmentation (GDA)

Gaussian noise does not work for attacks, but does it work as a defense?



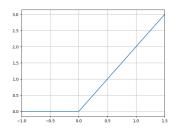
- Reinforce neighborhoods around points using random noise.
- For each input image, generate *N* versions by adding Gaussian noise to the pixels.
- Train the model on the original data and the noisy inputs.

Objective Limit the cumulative effect of errors in the layers.

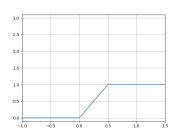


$$f(x) = \begin{cases} RELU \\ 0, & x < 0 \\ x, & x \ge 0. \end{cases}$$

Objective Limit the cumulative effect of errors in the layers.



$$f(x) = \begin{cases} RELU \\ 0, & x < 0 \\ x, & x \ge 0. \end{cases}$$



Bounded RELU
$$f_t(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < t \\ t, & x \ge t. \end{cases}$$

Experiments

- MNIST dataset of handwritten digits
 - ullet 60,000 training + 10,000 test images
- CIFAR-10 dataset of 32×32 RGB images
 - 50,000 training + 10,000 test images
 - 10 categories
- Convolutional neural net (CNN) architecture

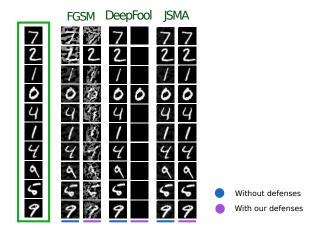
Threat model

- Black-box: attacker has access to inputs and outputs
- White-box: attacker also has access to model parameters.

Steps

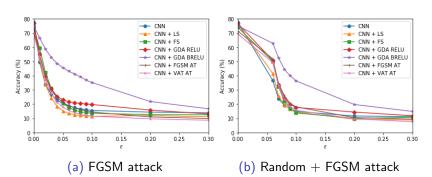
- Train model with different defenses
- Generate attack images
- Compute defense performance on attack images

Amount of perturbation necessary to fool the model



With our defense, the perturbation necessary for an attack becomes **visually detectable**.

Comparison of different defenses against white-box attacks



CIFAR-10

Accuracy = % of correct predictions = TP + TN

Comparison of different defenses against black-box attacks

Attack Defense	FGSM	Rand + FGSM	DeepFool	JSMA	C&W
CNN	94.46	40.70	92.95	97.95	93.10
Feature squeezing	96.31	91.09	96.68	97.48	96.75
Label smoothing	86.79	20.28	84.58	95.86	84.81
FGSM adv. training	91.86	49.77	85.91	98.62	97.71
VAT	97.53	74.35	96.03	98.26	96.11
GDA + RELU	98.47	80.25	97.84	98.96	97.87
GDA + BRELU	98.08	75.50	98.00	98.88	98.03

Attacks transferred from ResNet to CNN on MNIST $Accuracy = \% \ of \ correct \ predictions = TP + TN$

Conclusion

Our contribution

- Improved defense against multiple types of attacks
- Model performance for clean inputs is preserved
- No retraining, no overhead for prediction
- Easy to integrate into models.

Takeaway

 The problem of adversarial examples needs to be solved before applying machine learning.

nemesis

- Our library of attacks and defenses
- Soon to be open-source.

Full paper at https://arxiv.org/pdf/1707.06728.pdf

IBM Research Dublin - AI & Machine Learning

Valentina Zantedeschi, Ambrish Rawat, Mathieu Sinn

- [1] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a regularization method for supervised and semi-supervised learning. arXiv preprint arXiv:1704.03976, 2017.
- [2] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep neural networks. *CoRR*, abs/1704.01155, 2017. URL http://arxiv.org/abs/1704.01155.
- [3] David Warde-Farley and Ian Goodfellow. Adversarial perturbations of deep neural networks. In Tamir Hazan, George Papandreou, and Daniel Tarlow, editors, *Perturbation, Optimization, and Statistics.* 2016.
- [4] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. *CoRR*, abs/1412.6572, 2014. URL http://arxiv.org/abs/1412.6572.
- [5] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.
- [6] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep neural networks. CoRR, abs/1511.04599, 2015. URL http://arxiv.org/abs/1511.04599.

References II

- [7] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. The limitations of deep learning in adversarial settings. *CoRR*, abs/1511.07528, 2015. URL http://arxiv.org/abs/1511.07528.
- [8] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *IEEE Symposium on Security and Privacy*, 2017. URL https://arxiv.org/abs/1608.04644.