
The Anatomy of Wiper Malware
Ioan Iacob
Madalin Ionita

▪ Background

▪ Main Techniques

▪ IOCTLs

▪ Third Party Drivers

▪ Miscellaneous Techniques

▪ Impact

Agenda

Ioan Iacob

▪ Sr. Security Researcher at CrowdStrike

▪ Reverse engineering malware for 9y+

▪ Prior experience in DFIR

▪ Enthusiastic about Python and C++

▪ linkedin.com/in/ioancristian/

About us

Madalin Ionita

▪ Security Researcher at CrowdStrike

▪ Reverse engineering malware for 6y+

▪ Prior experience in DFIR and Threat
Hunting

▪ linkedin.com/in/madalinionita/

Introduction
▪ Background

▪ History

▪ Our goals

▪ Wipers have one purpose, destroy the data beyond recoverability;

▪ Targets may be files and even drives;

▪ Wipers share some common techniques with ransomware;

▪ The wiping process can be achieved via multiple techniques;

▪ The techniques have different advantages and disadvantages;

Background

▪ 2012 - Aramco and RasGas oil companies have been hit by the Shamoon wiper;

▪ 2016 - Shamoon resurfaced and target the same institutions are before;

▪ 2017 - Petya included a wiper variant that targeted Ukrainian, Russian institutions;

▪ 2018 - Winter Olympics games were the target of the “Olympic Destroyer” wiper;

▪ 2019, 2020 - Dustman and ZeroCleare targeted institutions from the Middle East;

▪ 2022 - Ukraine has been the target of multiple Windows wiper families

▪ CaddyWiper, DoubleZero, DriveSlayer, IsaacWiper and WhisperGate;

History

▪ Identify techniques used by Wipers;

▪ file iteration methods, overwrite methods, contents, size, etc.

▪ usage of drivers or evasion techniques

▪ Sort and identify the most common behavior;

▪ Deep dive and discuss each technique;

Our goals

Main Techniques

▪ File Discovery

▪ File Overwrite

▪ Drive Destruction

▪ File Contents

▪ Ransomware and wipers share some techniques
▪ both walk the disk in search of files to modify or corrupt

▪ both make data recovery impossible for the victim

▪ ransomware enables file restoration for victims who pay the ransom

▪ Wipers implement various techniques in order to achieve their goals
▪ simplest approach is to delete files from disk

▪ others choose to overwrite the target files

▪ more advanced versions attempt to wipe raw disk clusters

▪ Wiper developers must make a tradeoff between speed and effectiveness

Main Techniques

▪ Most wipers recursively iterate through
the file system by using Windows APIs
like FindFirstFile and FindNextFile.

▪ Majority of wipers immediately overwrite
their targets;

▪ Apostle, DoubleZero, SQLShred and
WhisperGate choose to construct a list of
target files to be later processes by the
wiping routine;

File Discovery

Fig 1. File iteration via FindFirstFile and FindNextFile APIs

▪ CreateFile and WriteFile are the standard
APIs used for overwriting files, most
wipers implement this technique;

▪ While some wipers choose to wipe just
the first X bytes from a file
▪ Destover overwrites the entire file size

File Overwrite - File System API

Fig 2. Determine file size, allocate memory and write to file

▪ DoubleZero makes use of the

NtFsControlFile API to send the

FSCTL_SET_ZERO_DATA control code to the

FS driver along with the size of the file to

be overwritten;

File Overwrite - File IOCTL

Fig 3. DoubleZero uses FCSTL_SET_ZERO_DATA to overwrite file contents

▪ Ordinypt, Olympic and Apostle wipers
implement simple file deletion; do not
overwrite files*;

▪ Most wipers do not need to delete the
files because their contents have been
destroyed;

▪ Destover, KillDisk, Meteor
(Stardust/Comet), Shamoon, SQLShred,
and StoneDrill overwrite the target files
with random bytes. Only after replacing
the file contents, the file is deleted from
disk via the DeleteFile API

File Overwrite - File Deletion

Fig 4. How Shamoon wiper overwrites and deletes files

* in the case of Apostle it was an error in the logic of the file discovery, making it just a wiper that deletes the file, without overwriting them

▪ Some wipers go one step further and
attempt to destroy the contents of the
disk itself, not just files;

▪ IsaacWiper, KillDisk, Petya wiper variant,
SQLShred, StoneDrill, WhisperGate and
DriveSlayer use the same CreateFile and
WriteFile APIs to overwrite physical disks
(\\.\PhysicalDisk0) and/or volumes (\\.\c:)
with either random or predefined bytes
buffers.

Drive Destruction - Disk Write

Fig 5. Overwrite the MBR of the drive 0 via CreateFile and WriteFile APIs

▪ CaddyWiper wipes the disk by sending the
IOCTL_DISK_SET_DRIVE_LAYOUT_EX IOCTL is
sent via the DeviceIoControl API alongside a
buffer filled with zeros in order to wipe
information about drive partitions including
MBR/GPT;

Drive Destruction - Disk Drive IOCTL

Fig 6. CaddyWiper corrupts the disk layout using
IOCTL_DISK_SET_DRIVE_LAYOUT_EX

▪ CaddyWiper, DoubleZero, KillDisk, Meteor
and SQLShred write the same byte over the
entire length of the target file;

▪ This method does not add any overhead to
the wiping process, but might leave an
opportunity to recover the data via
magnetic-force microscopy.

File Contents - Overwrite with Same Byte Value

▪ To avoid any potential weakness of the
previous method, threat actors can decide to
generate random data to be written over
target files;

▪ Destover, IsaacWiper, KillDisk, SQLShred and
StoneDrill generate a random buffer via the
seed and rand functions, followed by a write to
the file;

▪ Generating random data adds an overhead;
Destover takes advantage of a caveat in the
malloc function to generate “random” data.

File Contents - Overwrite with Random Bytes

Fig 7. Malloc is used to “generate random” bytes that will be written
to the file

▪ Other wipers make use of hardcoded data to
overwrite files. It eliminates the overhead
seen in the prev. technique, thus increasing
the speed of data destruction.

▪ Shamoon overwrites a predefined jpeg over
the target files;

▪ IsraBye overwrites a message to the file, and
it does not overwrite every byte in the file
content, leaving some data available for
forensics analysts to extract.

File Contents - Overwrite with Predefined Data

Fig 8. Debugger view, showcasing Shamoon writing an image to a file

Fig 9. IsraBye code snippet used to file overwrite and file rename

▪ Most wipers make use of Windows APIs to achieve their goals
▪ FindFirstFile and FindNextFile

▪ CreateFile and WriteFile

▪ DeleteFile

▪ There are some unique implementations
▪ DoubleZero uses FSCTL_SET_ZERO_DATA IOCTL to overwrite the contents of files

▪ CaddyWiper uses IOCTL_DISK_SET_DRIVE_LAYOUT_EX to wipe the disk

▪ Wipers write different data to their target: some used a single byte value, others use
predefined data, or random bytes

Main Techniques Summary

IOCTLs

▪ Acquiring Information

▪ Volume Unmounting

▪ Destroying All Disk Contents

▪ Overwriting Disk Clusters

▪ Data Fragmentation

▪ File Type Determination

▪ File Iteration

▪ IOCTLs are methods of communication between a UM process and a KM device;

▪ In Windows, IOCTLs are sent via the DeviceIoControl API;

▪ IOCTL codes allow developers to define numerous functionalities, other than the well

known Create, Read, Write, Close, etc;

▪ Throughout our analysis, we encountered different uses of IOCTLs across samples;

▪ Wipers use IOCTLs to obtain various information about the volumes/disks, as well as

to achieve other functionalities;

Input/Output Control codes

▪ DriveSlayer uses
IOCTL_DISK_GET_DRIVE_LAYOUT_EX and
IOCTL_DISK_GET_DRIVE_GEOMETRY_EX to determine
the location of the MFT and MBR in order to
schedule them for wiping;

▪ DriveSlayer also uses
IOCTL_STORAGE_GET_DEVICE_NUMBER to grab
information such as partition number and device
type, which is later used in the wiper process.

Acquiring Information

Fig 10. DriveSlayer acquires disk layout information via IOCTL_DISK_GET_DRIVE_LAYOUT_EX,
followed by the usage of the returned data to determine which disk sectors to overwrite

▪ The FSCTL_LOCK_VOLUME and
FSCTL_DISMOUNT_VOLUME IOCTLs are used by
DriveSlayer to lock and unmount a disk
volume after the wiping routine has finished.

▪ DriveSlayer grabs a list of all the drive letters
via GetLogicalDriveStrings, iterates through all
of them, acquires a handle to each volume
and then sends these two IOCTLs;

▪ Petya and StoneDrill implement a similar
technique.

Volume Unmounting

Fig 11. Usage of FSCTL_LOCK_VOLUME and
FSCTL_DISMOUNT_VOLUME for locking and dismounting the volume

▪ SQLShred also calls the DeviceIoControl API
with the IOCTL_DISK_DELETE_DRIVE_LAYOUT IO
Control Code in order to make sure the disk is
formatted from sector 0x00.

Destroying All Disk Contents

Fig 12. Usage of IOCTL_DISK_DELETE_DRIVE_LAYOUT that removes
the boot signature from the master boot record, so that the disk will

be formatted from sector zero to the end of the disk

▪ The FSCTL_GET_VOLUME_BITMAP IOCTL is used
by DriveSlayer to acquire a bitmap
representation of the occupied clusters of a
disk volume

▪ The bitmap representation is returned as a
data structure that describes the allocation
state of each cluster in the file system, where
positive bits indicate if the cluster is in use

▪ DriveSlayer will use this bitmap to overwrite
occupied clusters with randomly generated
data.

Overwriting Disk Clusters

Fig 13. Grab bitmap representation of cluster usage via
FSCTL_GET_VOLUME_BITMAP

▪ DriveSlayer uses two IOCTLs to fragment the
data on disk, thus making file recovery harder

▪ In order to fragment the data, the wiper
determines the location on disk of individual
files by requesting cluster information via the
FSCTL_GET_RETRIEVAL_POINTERS IOCTL

▪ The wiper continues by relocating virtual
clusters using the FSCTL_MOVE_FILE IOCTL

Data Fragmentation

Fige 14. Fragmentation of data by using the FSCTL_MOVE_FILE IOCTL

▪ When getting information about files,
besides GetFileAttributesW API, SQLShred
wiper is also using the
FSCTL_GET_REPARSE_POINT IOCTL to
retrieve the reparse point data associated
with the file or directory

▪ In this case, the wiper is using it to check
if the file is a symlink or the directory
represents a mount point.

File Type Determination

Figure 15. Obtaining the reparse point data associated with the file or
directory by using FSCTL_GET_REPARSE_POINT IOCTL, followed by

checks for symlinks or mount points

▪ DriveSlayer grabs the MFT (Master File Table)
in order to parse it and iterate through files;

▪ FSCTL_GET_NTFS_VOLUME_DATA IOCTL is used
to obtain information about the specified
NTFS volume, like volume serial number,
number of sectors and clusters free, as well
as reversed clusters and even the location of
the MFT;

▪ FSCTL_GET_NTFS_FILE_RECORD is used to
get information about the file

File Iteration

Fig 16. Gather volume data via the
FSCTL_GET_NTFS_VOLUME_DATA IOCTL

IOCTLs IOCTL constant name Used by

0x00070000 IOCTL_DISK_GET_DRIVE_GEOMETRY Petya wiper variant, Dustman and ZeroCleare

0x000700A0 IOCTL_DISK_GET_DRIVE_GEOMETRY_EX DriveSlayer, Dustman and ZeroCleare, IsaacWiper

0x00070048 IOCTL_DISK_GET_PARTITION_INFO_EX Shamoon 2, Petya wiper variant

0x00070050 IOCTL_DISK_GET_DRIVE_LAYOUT_EX DriveSlayer

0x0007405C IOCTL_DISK_GET_LENGTH_INFO StoneDrill, Dustman and ZeroCleare

0x0007C054 IOCTL_DISK_SET_DRIVE_LAYOUT_EX CaddyWiper

0x0007C100 IOCTL_DISK_DELETE_DRIVE_LAYOUT SQLShred

0x00090018 FSCTL_LOCK_VOLUME DriveSlayer, StoneDrill, IsaacWiper

0x0009001C FSCTL_UNLOCK_VOLUME IsaacWiper

0x00090020 FSCTL_DISMOUNT_VOLUME DriveSlayer, Petya wiper variant, StoneDrill

0x00090064 FSCTL_GET_NTFS_VOLUME_DATA DriveSlayer

0x00090068 FSCTL_GET_NTFS_FILE_RECORD DriveSlayer

0x0009006F FSCTL_GET_VOLUME_BITMAP DriveSlayer

0x00090073 FSCTL_GET_RETRIEVAL_POINTERS DriveSlayer, Shamoon 2

0x00090074 FSCTL_MOVE_FILE DriveSlayer

0x000900A8 FSCTL_GET_REPARSE_POINT SQLShred

0x000980C8 FCSTL_SET_ZERO_DATA DoubleZero

0x002D1080 IOCTL_STORAGE_GET_DEVICE_NUMBER DriveSlayer, IsaacWiper

0x00560000 IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS DriveSlayer, Petya wiper variant, SLQShred, Dustman and ZeroCleare

▪ Wipers use various IOCTL codes in order to enrich their capabilities.

▪ Input/Output control codes can be used for various types of operations, they can help
to enumerate files, locate the Master File Table (MFT), determine location of files on
the raw disk, unmount drivers, fragment files, etc.

▪ These codes can be sent directly to the volume or drive itself, but even to the third
party drivers that we will discuss in the next part.

IOCTL Summary

Third Party Drivers
▪ Introduction

▪ ElRawDisk

▪ EPMNTDRV

▪ The User space has its limitations and it is heavily guarded by security tools;

▪ The Kernel space provides limitless capabilities, making it the ideal place for
malware;

▪ Kernel drivers are difficult to develop:

▪ bugs may crash the entire OS;

▪ the x64 architecture requires drivers to be signed by Microsoft;

▪ Threat actors have refrained from writing their own drivers and make use of
legitimate ones;

Introduction to 3rd party drivers

▪ Legitimate drivers may bypass detections from security tools;

▪ Drivers may be installed via Service Control Manager or via the “sc.exe” LOLBin.

▪ Drivers allow UM processes to overwrite protected areas of the disk/OS like Virtual
Shadow Copies, Master File Tables, raw sectors, system protected files, etc;

Introduction to 3rd party drivers

▪ The ElRawDisk drivers is developed by the Eldos company;

▪ The driver is used by Destover, ZeroCleare, Dustman and Shamoon wipers

▪ It is used to “proxy” all disk activity through it, wiping will be done by the driver, not UM

process;

▪ ZeroCleare and Dustman use an unsigned version of ElRawDisk driver which is loaded using

Turla Driver Loader;

▪ TDL installs a signed and vulnerable VBoxDrv driver;

▪ this driver is exploited to mimic the functionality of a driver loader and the unsigned ElRawDisk

driver is mapped in kernel mode without having to patch Windows Driver Signature Enforcement

(DSE).

ElRawDisk

▪ In order to interact with the driver, the UM

process must follow these steps:

▪ Grab a handle via CreateFile and provide a

key;

▪ The key can be easily stolen from

legitimate software that uses the driver;

▪ Use WriteFile or DeviceIoControl to

write/communicate with the device;

ElRawDisk

Fig 17. Open handle to ElRawDisk device with the serial key appended to the device name

▪ Shamoon uses the driver to retrieve

information about the location of various

files on the raw disk by using

FSCTL_GET_RETRIEVAL_POINTERS IOCTL;

▪ IOCTL based communication is done via the

DeviceIoControl API;

▪ This information is later useful to

determine the raw sectors to overwrite;

ElRawDisk

Fig 18. Send FSCTL_GET_RETRIEVAL_POINTERS via DeviceIoControl API

▪ Shamoon requests partitioning
information via the
IOCTL_DISK_GET_PARTITION_INFO_EX
IOCTL;

▪ This helps the wiper to determine what
sectors to iterate over in order to wipe the
entire disk;

▪ Wiping is achieve via CreateFile, WriteFile
and SetFilePointer APIs.

ElRawDisk - Shamoon

Fig 19. Requesting partitioning information and API trace view

▪ ElRawDisk driver is loaded using Turla
Driver Loader (TDL)

▪ Dustman and ZeroCleare calls
DeviceIoControl using one of two
different IOCTLs (0x22BF84 or
0x227F80), depending on the Windows
version.

▪ the DeviceIoControl call will overwrite the
contents of the physical drive with
custom data.

ElRawDisk - Dustman/ZeroCleare

Fig 20. How ZeroCleare and Dustman use ElRawDisk to overwrite
the disk with a custom buffer

Fig 21. The custom IOCTL codes found in the ElRawDisk driver

▪ EPMNTDRV is another driver developed by legitimate entity and repurposed by threat
actors;

▪ The driver is developed by EaseUs for their partition manager utility;

▪ This driver has been used in March of 2022 by DriveSlayer against Ukraine;

▪ DriveSlayer kept the driver inside a LZA compressed resource inside the PE file and
loaded it via the Windows SCM;

EPMNTDRV

▪ Upon execution, the driver creates the
“EPMNTDRV” Device and Symbolic link
followed by defining the major functions;

▪ Similarly to the previous driver, all activities
are redirected to the disk driver;

EPMNTDRV

Fig 22. Main function of the EPMNTDRV initiating various dispatch routines

▪ The “Create” dispatch routine open a handle
to the “\Device\Harddisk%u\Partition0”
device to be later used by other dispatch
routines;

EPMNTDRV

Fig 23. Pseudocode view of the IRP_MJ_CREATE dispatch routine from
EPMNTDRV driver, showcasing how it opens a handle to the local disk
(\Device\Harddisk%u\Partition0)

▪ The “Write” dispatch routine builds a IRP
packet and redirects it to the disk driver via
the “IofCallDriver”;

EPMNTDRV

Fig 24. Pseudocode view of the IRP_MJ_WRITE dispatch routine
from EPMNTDRV driver, showcasing how an IRP request is created
and sent to the driver handling the HardDisk device.

▪ The “DeviceControl” dispatch routines
behaves similarly to the “Write” routine, it
redirects any incoming packets to the disk
device;

EPMNTDRV

Fig 25. Pseudocode view of the IRP_MJ_DEVICE_CONTROL dispatch
routine from EPMNTDRV driver, showcasing how IO control codes are

forwarded to the HDD device driver

▪ DriveSlayer acquires a handle to the
EPMNTDRV and starts the wiping procedure
by calling the “SetFilePointer” and “WriteFile
APIs”;

▪ DriveSlayer will overwrite the MBR, MFT and
files on behalf of the of the legitimate driver.

EPMNTDRV

Fig 26. Pseudocode from DriveSlayer displaying how to data is sent to the
third-party driver in order to overwrite the disk

▪ Threat actors have repurposed legitimate drivers to achieve their malicious goals;

▪ The “ElRawDisk” and “EPMNTDRV” are two drivers used by wiper families like
“Shamoon”, “DriveSlayer”, “ZeroCleare”, “Dustman”;

▪ Using legitimate drivers may evade detection and also decreases development costs
for threat actors;

▪ These drivers allow UM processes to overwrite raw sectors, MFT, VSS and other
protected areas of the disk/OS;

Third party drivers summary

Miscellaneous
Techniques

▪ Volume Shadow Copies Deletion

▪ Fill Empty Space

▪ Boot Configuration

▪ Active Directory Interaction

▪ Scripts

▪ Reboot

▪ Disable Crash Dumps

▪ Wiper, Ransomware or Both

▪ Registry Wiping and Deletion

▪ In additional to the most common techniques, wipers may require extra information
in order to achieve their goals;
▪ Some of these are common in ransomware as well

▪ Others are wiper-specific, and are related to the chain attack they were used in

▪ Let’s dive into some of the rarely used “helper” techniques implemented by wipers;

Miscellaneous Techniques

▪ Only Meteor deletes shadow copies by either
using Windows Management
Instrumentation command-line utility
wmic.exe or by calling native Volume Shadow
Copy Service Admin tool vssadmin.exe;

▪ DriveSlayer only disables the VSS service, and
it does not attempt to delete the snapshots;

▪ Wipers that use 3rd party drivers to wipe
sectors do not require VSS deletion;

Volume Shadow Copies Deletion

Fig 27. DriveSlayer disabling VSS service

wmic.exe shadowcopy delete
vssadmin.exe delete shadows /all /quiet

▪ IsaacWiper wiper creates a thread that fills
the unallocated space of the disk, with
random data;

▪ It first obtains the amount of space available
for a volume, and creates a temporary file
that grows in size until the disk it’s filled.

▪ The temporary file is filled with random data,
written in blocks of size 0x1000.

Fill Empty Space

Fig 28. IsaacWiper pseudocode responsible
with filling the empty space of the volume

▪ Meteor wiper makes the OS unbootable by
changing the boot configuration of the
infected machine.

▪ This can be done by either corrupting the
system’s boot.ini file, or by using a series of
bcdedit commands.

▪ The first one is used to identify
configurations, while the later is used to
delete a specific entry.

Boot Configuration

Fig 29. Example of the how boot menu entries can be deleted using
bcdedit

bcdedit.exe -v
bcdedit.exe /delete {GUIDIDENTIFIER} /f

▪ CaddyWiper and DoubleZero ensure that
they do not run on a DC.

▪ DsRoleGetPrimaryDomainInformation API is
used by CaddyWiper to determine if the
victim machine is not a primary domain
controller.

▪ Meteor unregisters the workstation from the
domain using either a call to
NetUnjoinDomain, or using the following
wmic command:

Active Directory Interaction

Fig 30. Determine if the machine is a Domain Controller via the
DsRoleGetPrimaryDomainInformation API

cmd.exe /c wmic computersystem where name="%computername%" call unjoindomainorworkgroup

▪ Some wipers authors chose to use default
OS functionalities, accessible via BAT
scripts;

▪ Apostle and Olympic wiper are two
examples that use batch
scripts/commands to achieve their goals;

Scripts

Fig 31. Main function of the EPMNTDRV initiating various dispatch routines

del %systemdrive%*.*/f/s/q windir%\system32\rundll32.exe
advapi32.dll,ProcessIdleTasks
del %0

cmd.exe /c del /S /Q *.doc c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.docm c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.docx c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.dot c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.dotm c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.dotx c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.pdf c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.csv c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.xls c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.xlsx c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.xlsm c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.ppt c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.pptx c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.pptm c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.jtdc c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.jttc c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.jtd c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.jtt c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.txt c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.exe c:\users\%username%\ > nul
cmd.exe /c del /S /Q *.log c:\users\%username%\ > nul

▪ After wiping the disks/files, some wipers will
forcly reboot/shutdown the machine;

▪ Apostle, DoubleZero, Destover, KillDisk, and
StoneDrill use the ExitWindowsEx;

▪ Petya wiper variant implements this calling
NtRaiseHardError;

▪ DriveSlayer is makes use of the
InitiateSystemShutdownEx API with the following
arguments:

▪ SHTDN_REASON_FLAG_PLANNED,
▪ SHTDN_REASON_MAJOR_OPERATINGSYSTEM,
▪ SHTDN_REASON_MINOR_INSTALLATION and
▪ SHTDN_REASON_MINOR_HOTFIX.

Reboot

Fig 32. Acquire shutdown privilege and shutdown
 the machine seen in KillDisk

Fig 33. Forcing operating system reboot by
calling NtRaiseHardError with the 0xC0000350 error status

▪ DriveSlayer is the only wiper that disables crash dumps
from being generated by the OS.

▪ These may provide additional information to a potential
researcher in case the machine crashes due to a bug in
the driver or malware.

▪ To disable this feature, the wiper changes the following
registry key value to 0x0 via the RegOpenKey and
RegSetValue APIs:

▪ HKLM\SYSTEM\CurrentControlSet\Control\CrashControl

Disable Crash Dumps

▪ Some authors decide to use the same source
code to transition their malware from wiper to
ransomware, or vice versa;

▪ Apostle evolved from a wiper to a ransomware;

▪ Petya crafted a wiper version of the known
ransomware;

▪ Ordinypt masquerades as a ransomware

▪ it deletes the files, replaces them with dummy
ones and also drops a ransom note on the disk

▪ the wiper has a bug which writes then deletes its
own ransom notes several times.

Wiper, Ransomware or Both

Fig 34. Screenshot demonstrating how Ordinypt wiper
accidentally deletes its own ransom notes

▪ DoubleZero was the only analyzed sample
that implemented a mechanism in which
each registry value is set to 0x00 or empty
string, followed by a deletion of the subkey
tree via Windows APIs.

Registry Wiping and Deletion

Fig 35. DoubleZero overwrites the registry keys

▪ Some wipers implement techniques commonly used by ransomware as well:
▪ Volume Shadow Copies Deletion
▪ Changing Boot Configuration
▪ Reboots

▪ Others have their own miscellaneous techniques:
▪ Filling empty space
▪ Wiping registry keys contents
▪ Disabling crash dump

Miscellaneous Techniques Summary

▪ Over the last ten years the security industry has seen the use of wipers growing in
popularity, notably for sabotage attacks

▪ as illustrated by their use to target Ukraine in the spring of 2022

▪ Wipers share many features with ransomware, but they differ in their ultimate
objective

▪ Rather than pursue financial gain, wipers destroy data beyond recoverability;

Impact

▪ There are multiple ways wipers can achieve their goals, leaving to developers the need
to make a trade-off between speed and effectiveness

▪ Cybersecurity professionals can use different countermeasures and tools in order to recover
the lost data.

▪ This has motivated wiper developers to increase effectiveness by overwriting files as well as
raw disk sectors, in order to decrease recoverability options as much as possible.

Impact

▪ Over the years, wipers did not increase in complexity:

▪ some only delete the user files along with volume shadow copies;

▪ the more advanced ones use legitimate kernel driver implants on the victim’s machine in
order to proxy the entire wiping activity through them and also remain as undetectable as
possible.

▪ The final nail in the coffin is achieved by force rebooting the machine, combined with
other techniques that will completely eliminate any recovery options.

Impact

File Discovery All samples

File Overwrite / File System API CaddyWiper, DoubleZero, IsaacWiper, KillDisk, Meteor, Petya wiper, Shamoon, SQLShred, StoneDrill, and WhisperGate, Destover

File Overwrite / File IOCTL DoubleZero

File Overwrite / File Deletion Ordinypt, Olympic wiper and Apostle, Destover, KillDisk, Meteor, Shamoon, SQLShred, and StoneDrill

Drive Destruction / Disk Write IsaacWiper, KillDisk, Petya wiper variant, SQLShred, StoneDrill, WhisperGate, and DriveSlayer

Drive Destruction / Disk Drive IOCTL CaddyWiper

File contents / Overwrite with Same Byte Value CaddyWiper, DoubleZero, KillDisk, Meteor, and SQLShred

File contents / Overwrite with Random Bytes Destover, IsaacWiper, KillDisk, SQLShred and StoneDrill

File contents / Overwrite with Predefined Data Shamoon, IsraBye

Third Party Drivers / ElRawDisk Driver Destover, ZeroCleare, Dustman and Shamoon

Third Party Drivers / EPMNTDRV Driver DriveSlayer

IOCTL / Acquiring Information IsaacWiper, Petya wiper variant, Dustman or ZeroCleare

IOCTL / Volume Unmounting DriveSlayer, Petya, StoneDrill

IOCTL / Destroying All Disk Contents SQLShred

IOCTL / Overwriting Disk Clusters DriveSlayer

IOCTL / Data Fragmentation DriveSlayer

IOCTL / File Type Determination SQLShred

IOCTL / File Iteration DriveSlayer

Misc / Volume Shadow Copies Deletion Meteor

Misc / Fill Empty Space IsaacWiper

Misc / Boot Configuration Meteor

Misc / Active Directory Interaction CaddyWiper, DoubleZero, Meteor

Misc / Scripts Apostle, Olympic wiper

Misc / Reboot Apostle, DoubleZero, Destover, KillDisk, StoneDrill, Petya wiper, DriveSlayer

Misc / Disable Crash Dumps DriveSlayer

Misc / Wiper, Ransomware or Both Apostle, Petya, Meteor and KillDisk, Ordinypt

Misc / Registry Wiping and Deletion DoubleZero

▪ The Falcon platform takes a layered
approach to protect workloads. Using
on-sensor and cloud-based machine
learning, behavior-based detection
using indicators of attack (IOAs), and
intelligence related to tactics,
techniques and procedures (TTPs)
employed by threat actors, the Falcon
platform equips users with visibility,
threat detection and continuous
monitoring for any environment,
reducing the time to detect and mitigate
threats.

How the Falcon Platform offers continuous monitoring and visibility

Q & A

Thank you

