Augment cybersecurity through
A.L

From a software engineer perspective

Mihail-lulian Plesa
Special Telecommunications Service

Content

Detect obfuscated JavaScript files
Malware detection

Malware generation

Twitter phishing

Voice impersonation

DeepExploit

Detect obfuscated JavaScript

Dataset

* Dataset
* 1477 obfuscated files
* 1398 not obfuscated files

Detect obfuscated JavaScript

Model

Layer (type)

Output Shape

embedding (Embedding)

bidirectional (Bidirectiona
1)

dense (Dense)

dense_1 (Dense)

(None, 120, 16)

(None, 64)

(None, 32)

(None, 1)

989968

12544

2080

Total params: 1,004,625
Trainable params: 1,004,625
Non-trainable params: 0

Detect obfuscated JavaScript

Solution

* https:/colab.research.google.com/drive/1qcA4rtiLawgCt5obGnKJiSLOMBVEVByX?
usp=sharing

https://colab.research.google.com/drive/1qcA4rt1LawqCt59bGnKJiSLOMBVEVByX?usp=sharing
https://colab.research.google.com/drive/1qcA4rt1LawqCt59bGnKJiSLOMBVEVByX?usp=sharing

Malware detection

Problem

* Dataset
* 55600 samples of malware android apps
* 0476 samples of benign android apps

» 215 features for each sample

Malware detection

Feature examples

transact API call signature
onServiceConnected API call signature
bindService API call signature
attachinterface API call signature
ServiceConnection API call signature
android.os.Binder API call signature
SEND_SMS Manifest Permission
Ljava.lang.Class.getCanonicalName API call signature
Ljava.lang.Class.getMethods API call signature
Ljava.lang.Class.cast API call signature
Ljava.net.URLDecoder API call signature
android.content.pm.Signature API call signature
android.telephony.SmsManager API call signature
READ_PHONE_STATE Manifest Permission
getBinder API call signature
ClassLoader API call signature

Malware detection
Model

Layer (type) Output Shape Param #
“comvid (ConviD) (Neme, 211, 32) 192

Tax_poolingld (MaxPoolinglD (None, 105, 32) 0

convld_1 (ConvlD) (None, 101, 32) 5152

max_poolingld_1 (MaxPooling (None, 50, 32) 0

1D)

convld_2 (ConvlD) (None, 46, 64) 10304

global_max_poolingld (Globa (None, 64) 0

WMaxPooling1D)

dense (Dense) (None, 256) 16640

dense_1 (Dense) (None, 1) 257

Total params: 32,545
Trainable params: 32,545
Non-trainable params: 0

Malware detection

Solution

» https:/colab.research.google.com/drive/1YzcmsAFB-oGNdomjeo7frAIXxkzuHtEc?
usp=sharing

https://colab.research.google.com/drive/1Yzcm5AFB-oGNdomjeo7frAlXxk7uHtEc?usp=sharing
https://colab.research.google.com/drive/1Yzcm5AFB-oGNdomjeo7frAlXxk7uHtEc?usp=sharing

Features?

OHREALLY

g

-
o~
"t w
~

o -
-5 o
v :‘._
’ "‘ \ .
& & A 4 -
o) -~ -
- A : &>

. vy h
1 ,',"},,’ =
p H
.

Malware detection
MalConv

Malware Detection by Eating a Whole EXE

Edward Raff'>#, Jon Barker?, Jared Sylvester'~, Robert Brandon!~*

Bryan Catanzaro?, Charles Nicholas*
ILaboratory for Physical Sciences, 2NVIDIA, *Booz Allen Hamilton, “University of Maryland, Baltimore County
{edraff,jared,rbrandon} @lps.umd.edu, {jbarker,bcatanzaro } @nvidia.com, nicholas @umbc.edu

Abstract

In this work we introduce malware detection from raw byte se-
quences as a fruitful research area to the larger machine learn-
ing community. Building a neural network for such a problem
presents a number of interesting challenges that have not oc-
curred in tasks such as image processing or NLP. In particu-
lar, we note that detection from raw bytes presents a sequence
problem with over two million time steps and a problem where
batch normalization appear to hinder the learning process. We
present our 1initial work in building a solution to tackle this
problem, which has linear complexity dependence on the se-
quence length, and allows for interpretable sub-regions of the
binary to be identified. In doing so we will discuss the many
challenges in building a neural network to process data at this
scale, and the methods we used to work around them.

inside a specially instrumented environment, such as a cus-
tomized Virtual Machine (VM), which introduces high com-
putational requirements. Furthermore, in some cases it i1s pos-
sible for malware to detect when it 1s being analyzed. When
the malware detects an attempt to analyze it, the malware
can alter its behavior, allowing it to avoid discovery (Raf-
fetseder, Kruegel, and Kirda 2007; Garfinkel et al. 2007;
Carpenter, Liston, and Skoudis 2007). Even when malware
does not exhibit this behavior, the analysis environment may
not reflect the target environment of the malware, creating a
discrepancy between the training data collected and real life
environments (Rossow et al. 2012). While a dynamic analy-
sis component is likely to be an important component for a
long term solution, we avoid it at this time due to its added
complexity.

Malware Detection

MalConv - Dataset

* Dataset
* Group B (provided by industry partner)
* 200000 benign files
* 200000 malware files
* Group A
* 21854 benign files (Clean Windows Install)
* 43067 malware files (VirusShare)

Malware Detection
MalConv - Model

[ID Coan emporal Max-Pooling]
- !

Raw Byte —{Embedding] [Fully Connected]

N |
[ID Convj—>@ [Softmaxj

Malware Detection

MalConv - Idea

MS-DOS Header: Constant position
PE Header: Variable position
Functions can be rearranged in any order

The meaning of a byte is generated by the context (embeddings)

Malware Detection

MalConv - Solution

* Already trained

* https:/github.com/j40903272/MalConv-keras

https://github.com/j40903272/MalConv-keras

Generating Malware
MalGAN

Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN

Weiwei Hu and Ying Tan*
Key Laboratory of Machine Perception (MOE), and Department of Machine Intelligence
School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871 China
{weiwei.hu, ytan} @pku.edu.cn

Abstract

Machine learning has been used to detect new
malware in recent years, while malware au-
thors have strong motivation to attack such al-
gorithms.Malware authors usually have no access
to the detailed structures and parameters of the
machine learning models used by malware detec-
tion systems, and therefore they can only perform
black-box attacks. This paper proposes a generative
adversarial network (GAN) based algorithm named
MalGAN to generate adversarial malware exam-
ples, which are able to bypass black-box machine
learning based detection models. MalGAN uses a
substitute detector to fit the black-box malware de-
tection system. A generative network is trained to
minimize the generated adversarial examples’ ma-
licious probabilities predicted by the substitute de-
tector. The superiority of MalGAN over traditional
gradient based adversarial example generation al-
gorithms is that MalGAN is able to decrease the
detection rate to nearly zero and make the retrain-
ing based defensive method against adversarial ex-
amples hard to work.

Many machine learning algorithms are very vulnerable to
intentional attacks. Machine learning based malware detec-
tion algorithms cannot be used in real-world applications if
they are easily to be bypassed by some adversarial techniques.

Recently, adversarial examples of deep learning models
have attracted the attention of many researchers. Szegedy et
al. added imperceptible perturbations to images to maximize
a trained neural network’s classification errors, making the
network unable to classify the images correctly [Szegedy et
al., 2013]. The examples after adding perturbations are called
adversarial examples. Goodfellow et al. proposed a gradient
based algorithm to generate adversarial examples [Goodfel-
low et al., 2014b]. Papernot et al. used the Jacobian matrix to
determine which features to modify when generating adver-
sarial examples [Papernot et al., 2016¢]. The Jacobian matrix
based approach is also a kind of gradient based algorithm.

Grosse et al. proposed to use the gradient based approach
to generate adversarial Android malware examples [Grosse et
al., 2016]. The adversarial examples are used to fool a neural
network based malware detection model. They assumed that
attackers have full access to the parameters of the malware
detection model. For different sizes of neural networks, the
misclassification rates after adversarial crafting range from

40% to 84%.

Malware

Noise

Benign

Generating Malware

Generator

MalGAN

Adversarial
Malware
Examples

Labelling

Black-Box
Detector

Benign &
Adversarial

Malware Examples

with Labels

Substitute
Detector

Generating Malware
MalGAN

 Black Box Detector:
* LR
* SVM
* DT
 MLP (MalConv)

Generating Malware
MalGAN - Solution

* https:/github.com/yanminglai/Malware-GAN

https://github.com/yanminglai/Malware-GAN

Twitter Phishing

Dataset

e Dataset

* 1550 Elon Musk Tweets

Twitter Phishing

Model
Layer (type) Output Shape Param #
embedding (Embedding) (None, 53, 100) 432400
bidirectional (Bidirectiona (None, 600) 962400
1)
dense (Dense) (None, 4324) 2598724

Total params: 3,993,524
Trainable params: 3,993,524
Non-trainable params: 0

Twitter Phishing

Solution

» https:/colab.research.google.com/drive/14VRSahmzig763_glfunEfutpKcljkUih?
usp=sharing

https://colab.research.google.com/drive/14VRSahmz1g763_gIfunEfutpKcljkUih?usp=sharing
https://colab.research.google.com/drive/14VRSahmz1g763_gIfunEfutpKcljkUih?usp=sharing

Twitter Phishing

GPT-2

* https:/github.com/borisdayma/huggingtweets

https://github.com/borisdayma/huggingtweets

Voice impersonation

Transfer Learning from Speaker Verification to
Multispeaker Text-To-Speech Synthesis

Ye Jia* Yu Zhang® Ron J. Weiss* Quan Wang Jonathan Shen Fei Ren
Zhifeng Chen Patrick Nguyen Ruoming Pang Ignacio Lopez Moreno Yonghui Wu
Google Inc.

{jiaye,ngyuzh,ronw}@google.com

Abstract

We describe a neural network-based system for text-to-speech (TTS) synthesis that
is able to generate speech audio in the voice of different speakers, including those
unseen during training. Our system consists of three independently trained compo-
nents: (1) a speaker encoder network, trained on a speaker verification task using an
independent dataset of noisy speech without transcripts from thousands of speakers,
to generate a fixed-dimensional embedding vector from only seconds of reference
speech from a target speaker; (2) a sequence-to-sequence synthesis network based
on Tacotron 2 that generates a mel spectrogram from text, conditioned on the
speaker embedding; (3) an auto-regressive WaveNet-based vocoder network that
converts the mel spectrogram into time domain waveform samples. We demonstrate
that the proposed model is able to transfer the knowledge of speaker variability
learned by the discriminatively-trained speaker encoder to the multispeaker TTS
task, and is able to synthesize natural speech from speakers unseen during training.
We quantify the importance of training the speaker encoder on a large and diverse
speaker set in order to obtain the best generalization performance. Finally, we show
that randomly sampled speaker embeddings can be used to synthesize speech in
the voice of novel speakers dissimilar from those used in training, indicating that
the model has learned a high quality speaker representation.

Voice impersonation

Dataset

* VCTK
* 44 hours from 109 speakers
 LibriSpeech

* 436 hours from 1172 speakers

Voice impersonation

speaker
reference—
waveform

grapheme or
phoneme ——
sequence

Model

Speaker speaker
Encoder embedding
log-mel
Synthesizer T spectrogram
Encoder concat Attention | Decoder ——| Vocoder

—> waveform

Voice impersonation

Solution

e https:/eithub.com/CorentinJ/Real-Time-Voice-Clonin

https://github.com/CorentinJ/Real-Time-Voice-Cloning

Penetration testing
DeepExploit

* Reinforcement learning
* Improve efficiency

* Continuous learning

Penetration testing

DeepExploit - Architecture

<),Input command.

((docopt) }

ommand line arguments pars

A3C !

Send command
Reinforcement learning model l

Receive result
Keras
“® TensorFlow T X
e iéi"-"-"“"F{ ------------- E SlNVRllut. ,____{
______________ el | i . A

Deep Exploit

Penetration test framework

@metasploit

Testing

Test Servers

Learning

Metasploitable2
OWASP BWA etc..

Penetration testing

DeepExploit - Learning

Parameter Server

: Payloads
Target Host info cmd/unix/bind_ruby
0S type linux/x86/shell/bind_tcp
Product.Name bsd/x64/exec
Vgrs1on generic/debug_trap
Exp1$1t m:dule linux/mipsle/shell bind_tcp
arge

mainframe/shell_reverse_tcp

y‘ Aw=grad w* ?Aw:grad v\\ﬁw:grad

Worker thread Worker thread

@metasploit® @metasploit @metasploit®

recv send

send

TPGCV

raining Servers

Penetration testing

DeepExploit - Solution

* https:/github.com/130-bbr-bbg/machine_learning_security/tree/master/DeepExploit

https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/DeepExploit

Resources

Machine Learning
for Cybersecurity

Over 80 recipes on how to implement machine learning algorithms for

building security systems using Python

o« 4 /4 : p I
P ,
. - o, .
-~
« y .
-
- 4
4
l'
Vg
_— - . - .
»
- — -
- o -
(o
& 2
-
.
p '

Resources

ithub.com/PacktPublishing/Machine-Learning-for-Cybersecurity-
Cookbook

* https:/www.kaggle.com/datasets
* https:/laurencemoroney.com

https://github.com/PacktPublishing/Machine-Learning-for-Cybersecurity-Cookbook
https://github.com/PacktPublishing/Machine-Learning-for-Cybersecurity-Cookbook
https://www.kaggle.com/datasets
https://laurencemoroney.com

Conclusions

The lack of data
Large models are needed sometimes
Augument not automate

The security mindset

