
Nothing To Hide

Privacy-Preserving Cryptographic
Authentication In Practice

Who Am I
Abdullah Joseph

@MalwareCheese

Software Engineer ~12 years

Security Research ~8 years

Currently working in the adtech
industry as a security researcher

Typical Registration/Login
Implementation

Try #1 (with plaintext passwords): Registration

Client
(iPhone, Android,
browser, TV, etc)

Server

Step 2: Ok, I’ll save
this info in plaintext

Step 1: Hey. My
username is “bunny”
and password is
“foofoo”

DB

- “bunny” -> “foofoo”

Try #1 (with plaintext passwords): Login

Client
(iPhone, Android,
browser, TV, etc)

Server

Step 2: Lemme check the DB.

If inputPass == savedPass {
 Allow();
} else {
 Deny()
}Step 1: Hey. My

username is “bunny”
and password is
“foofoo”

DB

- “bunny” -> “foofoo”

Try #1 (with plaintext passwords): Issues
- Server saves client’s password in plaintext

- Client sends their password in plaintext

Try #1 (with plaintext passwords): Solutions
- Server saves client’s password in plaintext

- Solution: Server can maybe hash it before saving it?
- Client sends their password in plaintext

- Solution: ???

Try #2 (server-side hashing): Registration

Client
(iPhone, Android,
browser, TV, etc)

Server

Step 2: Ok, I’ll save
this info hashed

DB

- “bunny” -> Hash(“foofoo”)

Step 1: Hey. My
username is “bunny”
and password is
“foofoo”

Try #2 (server-side hashing): Login

Client
(iPhone, Android,
browser, TV, etc)

Server

Step 2: Lemme check the DB.

If inputPass == Hash(savedPass) {
 Allow();
} else {
 Deny()
}

DB

- “bunny” -> Hash(“foofoo”)

Step 1: Hey. My
username is “bunny”
and password is
“foofoo”

Try #2 (server-side hashing): Issues
- Server saves client’s password in plaintext

- Client sends their password in plaintext

Try #2 (server-side hashing): Issues
- RESOLVED Server saves client’s password in plaintext

- UNRESOLVED Client sends their password in plaintext

Try #2 (server-side hashing): Issues
- RESOLVED Server saves client’s password in plaintext

- UNRESOLVED Client sends their password in plaintext

Why is this even
an issue?

● Usernames and passwords are always sent in plaintext to the server

● Hopefully, the server will hash it before saving it

Most probably, they won’t

The Problem with Typical Registrations

Demo: Login to HN

The Solution? Half-life 3 And Cryptography

But mostly cryptography…

Let’s talk about OPRFs
(Oblivious Pseudorandom Functions)

Alice Bob

Alice Bob

Alice Bob

Alice Bob

They wanna compute a number
together whereas only one person

knows the result

OPRFs

Alice Bob

As opposed to something like
Diffie-Hellman, where both parties
compute a number and both know

the result

OPRFs

Alice Bob

As opposed to something like
Diffie-Hellman, where both parties
compute a number and both know

the result

OPRFs

Don’t tell this to a
real cryptographer.

They’ll chop off your
legs.

Alice BobOPRF Computation Overview

alice_secret bob_secret

 Exchange some data

oprf = f(alice_secret, bob_secret) Does not know result of product, but
aids in the computation using his
bob_secret

Step 1

Step 2

Step 3

Alice BobOPRF Computation Process

Step 0: Parameter Definitions
Step 1: Blinding
Step 2: Evaluation
Step 3: Unblinding

Has alice_secret Has bob_secret

Alice Bob

blinded_alice_secret = Blind(alice_secret)

blinded_alice_secret

OPRF Computation Process

Step 0: Parameter Definitions
Step 1: Blinding
Step 2: Evaluation
Step 3: Unblinding

Alice Bob

blinded_oprf =
 Evaluate(
 blinded_alice_secret,
 bob_secret,
)

 blinded_oprf

OPRF Computation Process

Step 0: Parameter Definitions
Step 1: Blinding
Step 2: Evaluation
Step 3: Unblinding

Alice Bob

 oprf = Unblind(blinded_oprf)

OPRF Computation Process

Step 0: Parameter Definitions
Step 1: Blinding
Step 2: Evaluation
Step 3: Unblinding (Finalization)

Alice BobOPRF Computation Overview

alice_secret bob_secret

 Exchange some data

oprf = f(alice_secret, bob_secret) Does not know result of product, but
aids in the computation using his
bob_secret

Step 1

Step 2

Step 3

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-10#section-3

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-10#section-3

Let’s revisit
registrations/logins

Try #2 (server-side hashing): Login

Client
(iPhone, Android,
browser, TV, etc)

Server

Step 2: Lemme check the DB.

If inputPass == hash(savedPass) {
 Allow();
} else {
 Deny()
}

DB

- “bunny” -> Hash(“foofoo”)

Step 1: Hey. My
username is “bunny”
and password is
“foofoo”

Try #2 (server-side hashing): Login

Client
(iPhone, Android,
browser, TV, etc)

Server

Step 2: Lemme check the DB.

If inputPass == hash(savedPass) {
 Allow();
} else {
 Deny()
}

DB

- “bunny” -> Hash(“foofoo”)

Step 1: Hey. My
username is “bunny”
and password is
“foofoo”

Given our newfound knowledge
of OPRFs, we no longer need
to send the password to the
server. We can compute an
OPRF instead

Try #2 (server-side hashing): Login

Client
(iPhone, Android,
browser, TV, etc)

Server

Step 2: Lemme check the DB.

If inputPass == hash(savedPass) {
 Allow();
} else {
 Deny()
}

DB

- “bunny” -> Hash(“foofoo”)

Step 1: Hey. My
username is “bunny”
and password is
“foofoo”

Let’s talk about the
OPAQUE protocol

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-09

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-09

The OPAQUE Protocol
A fast and secure authentication protocol (for registrations and logins) where

- The client’s credentials never leave their device
- And the server only learns from the client as much as they can to do the

authentication and nothing more.

OPAQUE is just one incarnation of privacy-preserving authentication schemes.
There’re more like SPAKE2, J-PAKE, and EKE.

OPAQUE was the finalist among similar authentication schemes and the
recommended protocol by the Crypto Forum Research Group:
https://github.com/cfrg/pake-selection

https://github.com/cfrg/pake-selection

Alice (Client) Bob (Server)

alice_secret

oprf = f(alice_secret, bob_secret)

Step 0

Step 1

Step 2

Step 3

Try #3 (OPAQUE): Registration

Step 0: Parameter Definitions
Step 1: OPRF computation
Step 2: Key generation
Step 3: Sealing an envelope

alice_envelope = encrypt(key=oprf,
 content=(alice_priv,
 alice_pub,

 bob_pub)
)

bob_priv, bob_pub = keygen()alice_priv, alice_pub = keygen()

db.put(“alice”,
alice_envelope,
alice_pub)

bob_secret

Alice (Client) Bob (Server)

alice_secret

oprf = f(alice_secret, bob_secret)

Step 0

Step 1

Step 2

Step 3

Try #3 (OPAQUE): Login

Step 0: Parameter Definitions
Step 1: OPRF computation
Step 2: Decrypt the registration envelope
Step 3: Derive session key

session_token = dh(alice_priv, bob_pub)

alice_envelope, alice_pub =
db.get(“alice”)

alice_priv, alice_pub, bob_pub = decrypt(key=oprf,
 content=alice_envelope)

session_token = dh(bob_priv,
 alice_pub)

bob_secret

Alice (Client) Bob (Server)

alice_secret

oprf = f(alice_secret, bob_secret)

Step 0

Step 1

Step 2

Step 3

Try #3 (OPAQUE): Login

Step 0: Parameter Definitions
Step 1: OPRF computation
Step 2: Decrypt the registration envelope
Step 3: Derive session key

session_token = dh(alice_priv, bob_pub)

alice_envelope, alice_pub =
db.get(“alice”)

alice_priv, alice_pub, bob_pub = decrypt(key=oprf,
 content=alice_envelope)

session_token = dh(bob_priv,
 alice_pub)

bob_secret

This is a shared, short-lived, single-use
session_token, computed by both parties, without
ever sharing alice_secret over the wire

Try #3 (OPAQUE): Issues
- RESOLVED Server saves client’s password in plaintext

- RESOLVED Client sends their password in plaintext

Try #3 (OPAQUE): Issues
- RESOLVED Server saves client’s password in plaintext

- RESOLVED Client sends their password in plaintext

Try #3 (OPAQUE): Issues
- RESOLVED Server saves client’s password in plaintext

- RESOLVED Client sends their password in plaintext

Okay,
OPAQUE is
cool.

Try #3 (OPAQUE): Issues
- RESOLVED Server saves client’s password in plaintext

- RESOLVED Client sends their password in plaintext

Okay,
OPAQUE is
cool. Why is
this guy here?

https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

OPAQUE in the
Wild

- I was working on a personal project

where I needed a privacy-first

registration system.

- Implementing cryptography is hard.

- I couldn’t find a production-grade SDK

for easy use across multiple platforms

So, I wrote

OPAQUE in the
Wild

So, I wrote an
SDK

- I was working on a personal project

where I needed a privacy-first

registration system.

- Implementing cryptography is hard.

- I couldn’t find a production-grade SDK

for easy use across multiple platforms

So, I wrote

https://github.com/afjoseph/plissken

https://github.com/afjoseph/plissken

Plissken

- Open-source SDK for Javascript,

Android and iOS.

- Provides backend and frontend

components: deployment and usage

should be plug-and-play

- Uses security-audited cryptographic

libraries (Go’s stdlib, Cloudflare libs)

- Written in Go. Can be compiled to

WASM, JS, shared libraries to use for

any programming language and can

produce tiny binaries for IoT devices

Client Login/Registration Code (JS)

Registration Login

Using session tokens

Backend Deployment/Usage Process

Plissken Auth Server Deployment

Check Session Tokens Through S2S Calls

Alice (Client) Bob (Business Server)

Plissken Architecture: Registrations

Auth Server

1. Runs the
registration
protocol

2. Stores the
password proofs

Alice (Client) Bob (Business Server)

Plissken Architecture: Logins & Resource Fetching

Auth Server
1. Runs the login
protocol

2. Stores
short-lived,
single-use
session tokens

Alice (Client) Bob (Business Server)

Plissken Architecture: Resource Fetching

Auth Server

1. Fetch some
resource with the
session token

2. Check if the
session token is
valid

Demo

Next Steps

- Get a security audit

- More platforms and easier

usage

- Use more cryptographic

primitives (3DH, HMQV, etc.)

Next Steps

- Get a security audit

- More platforms and easier

usage

- Use more cryptographic

primitives (3DH, HMQV, etc.)

Contributions, stars and forks

are welcome

Thank You!
@malwarecheese

https://github.com/afjoseph/plissken

https://github.com/afjoseph/plissken

