Nothing To Hide

Privacy-Preserving Cryptographic
Authentication In Practice

Who Am |

Abdullah Joseph

@MalwareCheese

Software Engineer ~12 years
Security Research ~8 years

Currently working in the adtech
industry as a security researcher

Typical Registration/Login
Implementation

Try #1 (with plaintext passwords): Registration

Client
(iPhone, Android,
browser, TV, etc)

Step 1: Hey. My
username is “bunny”
and password is
“foofoo”

Server

Step 2: Ok, I'll save
this info in plaintext

DB

- “bunny” -> “foofoo”

Try #1 (with plaintext passwords): Login Step 2: Lemme chack the DB,

If inputPass == savedPass {

Allow();
} else {
D
Step 1: Hey. My } eny()
username is “bunny”
and password is
“foofoo”
Client
(iPhone, Android, > Server
browser, TV, etc)

DB

- “bunny” -> “foofoo”

Try #1 (with plaintext passwords): Issues

- Server saves client’s password in plaintext

- Client sends their password in plaintext

Try #1 (with plaintext passwords): Solutions

- Server saves client’s password in plaintext
Solution: Server can maybe hash it before saving it?
- Client sends their password in plaintext
- Solution: ?7??

Try #2 (server-side hashing): Registration

Step 1: Hey. My
username is “bunny”
and password is

“foofoo”

Step 2: Ok, I'll save

Client > this info hashed

(iPhone, Android, Server
browser, TV, etc)

DB

- “bunny” -> Hash(“foofoo”)

Try #2 (server-side hashing): Login |sep2 tammecrecive e

If inputPass == Hash(savedPass) {

Allow();
} else {
D
Step 1: Hey. My } eny()
username is “bunny”
and password is
“foofoo”
Client
(iPhone, Android, > Server
browser, TV, etc)

DB

- “bunny” -> Hash(“foofoo”)

Try #2 (server-side hashing): Issues

- Server saves client’s password in plaintext

- Client sends their password in plaintext

Try #2 (server-side hashing): Issues

- RESOLVED Server saves client’s password in plaintext

- UNRESOLVED Client sends their password in plaintext

Try #2 (server-side hashing): Issues

- RESOLVED Server saves client’s password in plaintext

- UNRESOLVED Client sends their password in plaintext

N\

Why is this even
an issue?

32.8 Million Twitter Credentials May Have
Been Leaked

Breach Notification Site LeakedSource Claims Users Were Targeted by Malware

WHealt J

EQUIFAX®

Date: September 2017

Impact: 148 million people

CAM

Impact: 10.88 billion records.

Date: March 2020

&P

HARBOUR
PLAZA

Date: February 2022

Impact: 1.2 million records

)

AADHAAR

Date: March 2018

Impact: 1.1 billion people

--have | been pwned?

Check if your email or phone is in a data breach

The Problem with Typical Registrations

e Usernames and passwords are always sent in plaintext to the server

e Hopefully, the server will hash it before saving it

Most probably, they won't

Demo: Login to HN

The Solution? Half-life 3 And Cryptography

Has Science Gone Too Far? ZERO KNOWLEDGE

'1

But mostly cryptography...

Let’s talk about OPRFs

(Oblivious Pseudorandom Functions)

Alice Bob

Alice Bob

They wanna compute a number
together whereas only one person
knows the result

As opposed to something like
Diffie-Hellman, where both parties
compute a number and both know

the result

As opposed to something like
Diffie-Hellman, where both parties
compute a number and both know

/ the result

Don’t tell this to a
real cryptographer.
They’ll chop off your
legs.

OPRF Computation Overview

Step1 alice_secret bob_secret
Step 2 < Exchange some data >
Step 3 oprf = f(alice_secret, bob_secret) Does not know result of product, but

aids in the computation using his
bob_secret

Alice OPRF Computation Process Bob

Step 0: Parameter Definitions
Step 1: Blinding

Step 2: Evaluation

Step 3: Unblinding

Has alice_secret Has bob secret

OPRF Computation Process Bob

Step 0: Parameter Definitions
Step 1: Blinding

Step 2: Evaluation

Step 3: Unblinding

blinded_alice_secret = Blind(alice_secret)

blinded_alice_secret >

OPRF Computation Process

Step 0: Parameter Definitions
Step 1: Blinding

Step 2: Evaluation

Step 3: Unblinding

blinded_oprf =

Evaluate(
< blinded_oprf blinded_alice_secret,

bob_secret,

)

OPRF Computation Process

Step 0: Parameter Definitions
Step 1: Blinding

Step 2: Evaluation

Step 3: Unblinding (Finalization)

oprf = Unblind(blinded_oprf)

OPRF Computation Overview

Step1 alice_secret bob_secret
Step 2 < Exchange some data >
Step 3 oprf = f(alice_secret, bob_secret) Does not know result of product, but

aids in the computation using his
bob_secret

Internet-Draft OPRFs June 2022

In the base mode, a client and server interact to compute output =
F(skS, input), where input is the client's private input, skS is the
server's private key, and output is the OPRF output. The client
learns output and the server learns nothing. This interaction is
shown below.

Client Sexrver(skS)

blind, blindedElement = Blind(input)

blindedElement

evaluatedElement = Evaluate(blindedElement)

evaluatedElement

output = Finalize(input, blind, evaluatedElement)

Figure 1: OPRF protocol overview

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-10#section-3

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-10#section-3

Let’s revisit
registrations/logins

Try #2 (server-side hashing): Login |sep2 tammecrecive e

If inputPass == hash(savedPass) {

Allow();
} else {
D
Step 1: Hey. My } eny()
username is “bunny”
and password is
“foofoo”
Client
(iPhone, Android, > Server
browser, TV, etc)

DB

- “bunny” -> Hash(“foofoo”)

Try #2 (server-side hashing): Login

Client

(iPhone, Android,

browser, TV, etc)

Given our newfound knowledge
of OPREFs,
to the

server. We can compute an
OPREF instead

Server

DB

- “bunny” -> Hash(“foofoo”)

Try #2 (server-side hashing): Login

Client

(iPhone, Android,

browser, TV, etc)

Let’s talk about the

Server

DB

- “bunny” -> Hash(“foofoo”)

0 |
[Search] [txt|html|xml|pdfized|bibtex] [Tracker] [WG] [Email] [Diff1l] [Diff2
Versions: (draft-krawczyk-cfrg-opaque) @ 01 02 Informational

23 94 @05 06 @07 28 09

Network Working Group D. Bourdrez
Internet-Draft

Intended status: Informational H. Krawczyk

Expires: 7 January 2023 Algorand Foundation

K. Lewi

Novi Research

C. A. Wood

Cloudflare, Inc.

6 July 2022

The OPAQUE Asymmetric PAKE Protocol
draft-irtf-cfrg-opaque-09

Abstract

This document describes the OPAQUE protocol, a secure asymmetric
password-authenticated key exchange (aPAKE) that supports mutual
authentication in a client-server setting without reliance on PKI and
with security against pre-computation attacks upon server compromise.
In addition, the protocol provides forward secrecy and the ability to
hide the password from the server, even during password registration.
This document specifies the core OPAQUE protocol and one
instantiation based on 3DH.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-09

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-09

The OPAQUE Protocol

A fast and secure authentication protocol (for registrations and logins) where

- The client’s credentials never leave their device
- And the server only learns from the client as much as they can to do the
authentication and nothing more.

OPAQUE is just one incarnation of privacy-preserving authentication schemes.
There’re more like SPAKE2, J-PAKE, and EKE.

OPAQUE was the finalist among similar authentication schemes and the
recommended protocol by the Crypto Forum Research Group:
https://qithub.com/cfrg/pake-selection

https://github.com/cfrg/pake-selection

Try #3 (OPAQUE): Registration

Alice (Cllent) Step 0: Parameter Definitions Bob (Server)
Step 1: OPRF computation
Step 2: Key generation

Step 3: Sealing an envelope

Step 0 alice_secret bob_secret

Step 1 oprf = f(alice_secret, bob_secret)

Step 2 , alice_pub = keygen() bob_priv, bob_pub = keygen()
Step 3 alice_envelope = encrypt(key=oprf, db.put(“alice”,
content=(, alice_envelope,
alice_pub, alice_pub)

bob_pub)

Try #3 (OPAQUE): Login
Alice (Client)

Step 0: Parameter Definitions

Step 1: OPRF computation

Step 2: Decrypt the registration envelope
Step 3: Derive session key

Step 0 alice_secret
Step 1 oprf = f(alice_secret, bob_secret)
Step 2 , alice_pub, bob_pub = decrypt(key=oprf,

content=alice_envelope)

Step 3 session_token = dh(, bob_pub)

Bob (Server)

bob_secret

alice_envelope, alice pub =
db.get(“alice”)

session_token = dh(bob_priv,
alice_pub)

Try #3 (OPAQUE): Login

Alice (Client) Step 0: Parameter Definitions Bob (Server)

Step 1: OPRF computation
Step 2: Decrypt the registration envelope
Step 3: Derive session key

Step 0 alice_secret bob_secret

Step 1 oprf = f(alice_secret, bob_secret)

Step 2 , alice_pub, bob_pub = decrypt(key=oprf, alice_envelope, alice pub =
content=alice_envelope) db.get(“alice”)
Step 3 session_token = dh(, bob_pub) session_token = dh(bob_priv,

alice_secret

alice_pub)
{ session_token } /

Try #3 (OPAQUE): Issues

- RESOLVED Server saves client’s password in plaintext

- RESOLVED Client sends their password in plaintext

Try #3 (OPAQUE): Issues

- RESOLVED Server saves client’s password in plaintext

- RESOLVED Client sends their password in plaintext

| Okay,
OPAQUE is
cool.

ord in plaintext

d in plaintext

Okay, al ik ';"~ v
OPAQUE is AR ey
cool. Why is
this guy here?

Let’s talk about PAKE

The first rule of PAKE is: nobody ever wants to talk about PAKE. The second rule of

PAKE is that this is a shame, because PAKE — w \"/' B g

which stands for Password Authenticated Key

Exchange — is actually one of the most useful .\23456
technologies that (almost) never gets used. It P#Wo
should be deployed everywhere, and yet it isn’t. N X
ke Sign ==
To understand why this is such a damn shame, ~ |l Matthew Green

let’s start by describing a very real problem. I'm a cryptographer and profess

There’s even an Internet Draft proposal for OPAQUE, which you can read here.

(if you know of one, please link to it in the comments
and I’'ll update). (Update: There are several potential implementations listed in
the comments — [haven’t looked closely enough to endorse any, but this is

great!) But that should soon change.

https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

OPAQUE in the
Wild

| was working on a personal project
where | needed a privacy-first

registration system.
Implementing cryptography is hard.

| couldn’t find a production-grade SDK

for easy use across multiple platforms

So, | wrote

OPAQUE in the
Wild

So, | wrote an
SDK

| was working on a personal project
where | needed a privacy-first

registration system.
Implementing cryptography is hard.

| couldn’t find a production-grade SDK

for easy use across multiple platforms

So, | wrote

Plissken: Privacy-First, Zero-
Knowledge Password Authentication
Suite

https://github.com/afjoseph/plissken

https://github.com/afjoseph/plissken

Plissken

Open-source SDK for Javascript,
Android and iOS.

Provides backend and frontend
components: deployment and usage

should be plug-and-play

Uses security-audited cryptographic
libraries (Go’s stdlib, Cloudflare libs)

Written in Go. Can be compiled to
WASM, JS, shared libraries to use for
any programming language and can

produce tiny binaries for loT devices

Client Login/Registration Code (JS)

Registration

async handleRegisterBtn() {
try {
await plissken.run_password_reg(
app_token,
this.state.username,
this.state.password,
plissken_server_pub_key,
plissken_server_endpoint
);
console.log("plissken: Successfully registered");
} catch (error) {
console.error(plissken: while registering: ${error}’);
}
}

Login

async handleLoginBtn() {
try {

const session_token = await plissken.run_password_auth(

app_token,
this.state.username,
this.state.password,
plissken_server_pub_key,
plissken_server_endpoint

’
console.log("plissken: Successfully logged-in");

} catch (error) {

}

console.error(plissken: while logging-in: ${error}’);

}

Using session tokens

async fetchNewsFeed() {
try {
let response = await axios.get(
“${business_server_endpoint}/news-feed , {
params: {
session_token: this.state.session_token,
username: this.state.username,
}
});
Y R
} catch (error) {

console.error(while fetching news feed: ${error}’);

Backend Deployment/Usage Process

Check Session Tokens Through S2S Calls

req, _ := http.NewRequest(
ctx, "GET", plisskenEndpoint+"/check-credentials",
nil,

)

q := req.URL.Query()

q.Add("apptoken", plisskenAppToken)

q.Add("appsecret", plisskenAppSecret) Plissken Auth Server Deployment
q.Add("username", username)
q.Add("session_token", sessionToken) git clone github.com/afjoseph/plissken
req.URL.RawQuery = q.Encode() cd auth-server

go build ./...
resp, _ := http.DefaultClient.Do(req) # Or, run "just build-auth-server to build with Docker
if resp.StatusCode != http.StatusOK { ./plissken-auth -config-path=production.yaml

// handle err
}
// resp is a JSON blob of type
// PlisskenCheckCredentialsResponseData

type PlisskenCheckCredentialsResponseData struct {
Username string json:"username"’
CreatedAt int64 json:"created_at"’
SdkVersion string json:"sdk_version"®
ExpiresAt int64 " json:"expires_at"’

Plissken Architecture: Registrations

Bob (Business Server)

1. Runs the
registration

I
protoco Auth Server

2. Stores the
password proofs

Plissken Architecture: Logins & Resource Fetching

Bob (Business Server)

1. Runs the login
protocol

Auth Server

2. Stores
short-lived,
single-use
session tokens

Plissken Architecture: Resource Fetching

Bob (Business Server)
1. Fetch some
resource with the
session token

Auth Server

2. Check if the
session token is
valid

Demo

- Get a security audit
- More platforms and easier
usage

N eXt Ste pS - Use more cryptographic

primitives (3DH, HMQYV, etc.)

- Get a security audit
- More platforms and easier

usage

N eXt Ste pS - Use more cryptographic

primitives (3DH, HMQYV, etc.)

Contributions, stars and forks

are welcome

Thank You!

YW @malwarecheese

Q https://qithub.com/afioseph/plissken

https://github.com/afjoseph/plissken

