
The Open Source Fortress

1

@iosifache
Previous lives

1.5 years in the Romanian Army

Tech lead in a cybersec startup

Now software security engineer in the Ubuntu Security Team

Bucharest-based

Powered by Americanos

Long-distance running as a hobby

2

https://mutablesecurity.io/
https://wiki.ubuntu.com/SecurityTeam

3

Roundcube Webmail

Open source, browser-based IMAP client

Hosted on GitHub

With 5.2k stars (as per November 13, 2023)

Written in XHTML, CSS, JavaScript (with jQuery), and PHP

4

https://github.com/roundcube/roundcubemail

Q: What are we missing here?

1. /installer/index.php route stores the user-controlled configuration in
rcube->config .

2. When an email with a non-standard format is received, rcube::exec executes the
output of getCommand .

5

private static function getCommand($opt_name)
{
 static $error = [];

 $cmd = rcube::get_instance()->config->get($opt_name);

 if (empty($cmd)) {
 return false;
 }

 if (preg_match('/^(convert|identify)(\.exe)?$/i', $cmd)) {
 return $cmd;
 }

 // Executable must exist, also disallow network shares on Windows
 if ($cmd[0] != "\\" && file_exists($cmd)) {
 return $cmd;
 }

 if (empty($error[$opt_name])) {
 rcube::raise_error("Invalid $opt_name: $cmd", true, false);
 $error[$opt_name] = true;
 }

 return false;
}

From program/lib/Roundcube/rcube_image.php

6

https://github.com/roundcube/roundcubemail/blob/ecaada40307f79f3e99c2e83a9de176f85525aeb/program/lib/Roundcube/rcube_image.php#L502

A: Input sanitisation

CVE-2020-12641

Many vulnerable configuration items, leading to arbitrary code execution

7.66% EPSS and 9.8 CVSS

Used by APT28 to compromise Ukrainian organisations' servers

Added by CISA in the Known Exploited Vulnerabilities Catalogue

7

https://nvd.nist.gov/vuln/detail/CVE-2020-12641
https://securityaffairs.com/147681/apt/apt28-hacked-roundcube-ukraine.html
https://www.cisa.gov/known-exploited-vulnerabilities-catalog

But … Was it preventable?

Yes, but not with standard linters or scanners

Taint analysis as a possible solution
rcube->config as a tainted data source

rcube::exec as a sensitive sink

8

The Open Source Fortress

Lots of OSS tools that can be used to proactively detect vulnerabilities

Structure
Factual information

General software and software security topics

Brief presentation of each analysis technique

Practical examples for analysing a vulnerable codebase
Infrastructure and access

Documentations

Proposed solutions

9

10

11

Ubuntu Portrait

WebGoat-like codebase

"lightweight piece of software that runs on an Ubuntu server and allows users to
control it through their browsers"

On-premise deployment

Written in Python and C

12+ embedded vulnerabilities

12

https://owasp.org/www-project-webgoat/

13

14

15

Threat modelling

Identifying asset and threats
What we need to defend?

What can go wrong?

Advantages
Secure by design

Prioritisation

Stakeholder confidence booster

Legal requirement (e.g., USA and Singapore)

16

From AzureArchitecture/threat-model-templates

17

https://github.com/AzureArchitecture/threat-model-templates

OWASP Threat Dragon

Threat modelling tool backed by OWASP

Usual process
i. Threat model creation

ii. Diagram creation: STRIDE, CIA

iii. Asset representation: stores, process, actor, data flow, trust boundaries

iv. Manual threat identification, with type, status, score, priority, description, and
mitigation

18

Demo

19

20

Secret scanning

Searching for specific patterns or entropy for a secret

Secrets
API keys

Credentials

Tokens

Community (generic) rules

21

Gitleaks

Detector for hardcoded secrets

Analysis of the entire Git history

Support for baselines and custom formats of secrets

22

Demo

23

24

Dependency scanning

Iterating through all dependencies for finding their vulnerabilities

Usage of the dependencies declaration list

25

OSV-Scanner

Client for Google's OSV database, which embeds:
GitHub Security Advisories

PyPA

RustSec

Global Security Database

Support for ignored vulnerabilities

26

https://osv.dev/
https://github.com/advisories
https://github.com/pypa/advisory-database
https://rustsec.org/advisories/
https://github.com/cloudsecurityalliance/gsd-database

Demo

27

28

Linting

Static analysis tool for finding issues before compiling/running the code

Issues
Formatting

Grammar (for example, non-inclusive expressions)

Security

29

Bandit

Linter for Python

Abstract syntax tree representation of the code

Custom modules for:
Patterns of suspicious code

Deny lists of imports and function calls

Report generation

Support for baselines

30

flawfinder

Linter for C

Lexical scanning with detection of sensitive tokens

31

Demo

32

33

Code querying

Searchin a specific pattern in the codebase

Optional abstract representation of the codebase
Abstract syntax trees

Control flow graphs

Query types
Lexical

Regex

Data structures specific to the abstract representation

Community queries (but generic)

34

From Trail of Bit's "Fast and accurate syntax searching for C and C++"

35

https://blog.trailofbits.com/2022/12/22/syntax-searching-c-c-clang-ast/

Semgrep

(Partially) open-source code scanner

Support for 30+ programming languages

No prior build requirements

No DSL for rules

Default or third-party rules

36

Demo

37

38

Fuzzing

Running a program and offering random, unexpected inputs

A crash = a security issue

BFS traversal of the CFG

Optimisation
Instrumenting the source code

Knowing the input format

Defining the states

Testing all input streams

39

From AdaCore's "Finding Vulnerabilities using Advanced Fuzz testing and AFLplusplus v3.0"

40

https://blog.adacore.com/advanced-fuzz-testing-with-aflplusplus-3-00

AFL++

An American Fuzzy Lop (AFL) fork

Additional features compared to AFL
QEMU emulation

Persistent mode

Optimisations

Embedded in Google's OSS-Fuzz

41

https://github.com/google/AFL
https://google.github.io/oss-fuzz/

Demo

42

43

Symbolic execution

Investigating all CFG paths by replacing the concrete values with symbolic ones

Components
Sources

Sinks

Patterns

Path explosion problem

44

int f(int a, int b){
 int x = 1, y = 0;

 if (a != 0) {
 y = x + 3;
 if b == 0 {
 x = 2 * (a + b);
 }
 }

 return (a + b) / (x - y);
}

From symflower's "What is symbolic execution for software programs"

45

https://symflower.com/en/company/blog/2021/symbolic-execution/

KLEE
Generic symbolic execution with security use cases

Built on LLVM

46

https://llvm.org/

Demo

47

Other techniques

Stress/load testing
JMeter for many protocols and services

k6 for Kubernetes

Web dynamic analysis
OWASP's Zed Proxy Attack

48

https://github.com/apache/jmeter
https://github.com/grafana/k6
https://github.com/zaproxy/zaproxy

49

Security tooling automation

SARIF Multitool for performing operations with SARIF files (merging, paging,
querying, supressing, etc.)

Make and Poe the Poet for running tasks

IDE workflows (e.g., VSCode tasks) for running the tooling while coding

pre-commit for managing Git pre-commit hooks

act or GitLab Runner for running CI/CD workflows locally

GitHub Actions or GitLab pipelines for running CI/CD workflows

50

https://github.com/microsoft/sarif-sdk/blob/main/docs/multitool-usage.md
https://www.gnu.org/software/make/
https://github.com/nat-n/poethepoet
https://code.visualstudio.com/Docs/editor/tasks
https://github.com/pre-commit/pre-commit
https://github.com/nektos/act
https://docs.gitlab.com/runner/install/
https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/

51

Security checklist I: Proactive vulnerability discovery

 Create a threat model.
 Choose a suite of security tools to scan your codebase.
 Automate the suite of security tools in local/development environments and CI/CD

pipelines, with quality gates.
 Request the integration of your project with OSS-Fuzz.
 Periodically check for vulnerabilities in your dependencies.
 Constantly validate the warnings from your security tooling.
 Keep the threat model updated.

One-time activities are marked with , and the recurrent ones with .

52

Security checklist II: Secure users

 Design your software to be secure by default.
 Have security recommendations for users.
 Create SBOMs.

One-time activities are marked with , and the recurrent ones with .

53

Security checklist III: Established security reporting process

 Have a standardised, documented process for responding to vulnerabilities.
 Create a security policy with preferred way to contact and report format.
 Find backup security responders.
 Be transparent and verbose with the reported vulnerabilities: mention patching

commits, attach security tags to issues, and request CVE IDs.

One-time activities are marked with , and the recurrent ones with .

54

55

