VERKLE BASED POST-QUANTUM
DIGITAL SIGNATURE WITH
LATTICES

ASSOCIATION

Where Hacking & Security Co'llide

MAKSIM IAVICH

uf

ATTACKER

\

r f\ .
£ N
| l N
f’ h

4 -
o ——
s
_'r A

c:= Enck(m) m := Deck(c)

/E%cryption Dec, (Enc,(m)) = m Decryption

AES

®* Advanced encryption standard (AES)

* Standardized by NIST in 2000 based on a public, worldwide competition lasting over 3

years

® Block length = 128 bits

* Key length = 128, 192, or 256 bits

®*No real reason to use anything else

AES

AES Algorithm Working

Secret Key Secret Key

p Secure Channel ﬂ
J 2

- Plaintext O

O Plaintext -

Ciphertext
% %
t’

Sender Encrypﬂon Decrypﬂon Receiver
Server Server

HASH FUNCTIONS

®* (Cryptographic) hash function: maps arbitrary length inputs to a short,
fixed-length digest

® Can define keyed or unkeyed hash functions — Formally, keyed hash functions

are needed — In practice, hash functions are unkeyed (We will work with

unkeyed hash functions, and be less formal)

COLLISION-RESISTANCE

Let H: {0,1}* — {0,1}*n be a hash function
* A collision is a pair of distinct inputs x, x’ such that H(x) = H(x’)

* H is collision-resistant if it is infeasible to find a collision in H

GENERIC HASH-FUNCTION ATTACKS

What is the best “generic” collision attack on a hash functioon
H: {0,1}* — {0,1}"n 2

If we compute H(xi), ..., H(x2n+1), we are guaranteed to find a collision — Is it

possible to do better?

“BIRTHDAY” ATTACKS

Compute H(x:), ..., H(x2w2) — What is the probability of a collision?

* Related to the so-called birthday paradox — How many people are needed to

have a 50% chance that some two people share a birthday?

The Birthday

7 Jan 19 Nov
4 Apr ? 17 Dec

BIRTHDAY PARADOX

number of people chosen at random (n)

The probability of at least two of the 23 people chosen
sharing the same birthday = 50.7297%

-y
2
=
5
e
©
=
[
“
o
>
.E'
o]
©
o
=
L.
o

40 60
Number of People

HASH FUNCTIONS IN PRACTICE

* MD5

— Developed in 1991

— 128-bit output length

— Collisions found in 2004, should no longer be used
* SHA-1

— Introduced in 1995

— 160-bit output length

— Theoretical analyses indicate some weaknesses

— Very common; current trend to migrate to SHA-2

HASH FUNCTIONS IN PRACTICE

* SHA-2

— 256-bit or 512-bit output lengths
— No known significant weaknesses
* SHA-3 /Keccak

— Result of a public competition from 2008-201 2

— Very different design than SHA family
— Supports 224, 256, 384, and 51 2-bit outputs

HASH FUNCTIONS IN PRACTICE

BLAKE2 is a cryptographic hash function defined in RFC 7693 that comes in two

flavors:

BLAKE2b, optimized for 64-bit platforms and produces digests of any size
between 1 and 64 bytes,

BLAKEZ2s, optimized for 8- to 32-bit platforms and produces digests of any size
between 1 and 32 bytes.

THE KEY-DISTRIBUTION PROBLEM

®* How do users share a key in the first place?

®* Need to share the key using a secure channel...

® This problem can be solved in some settings...

® E.g., physical proximity, trusted courier

® (Note: this does not make private-key cryptography useless)

®...but not others (or at least not cheaply)

“CLASSICAL” CRYPTOGRAPHY
OFFERS NO SOLUTION
TO THESE PROBLEMS!

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-22, NO. 6, NOVEMBER 1976

New Directions in Cryptography

Invited Paper

WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

Abstract—Two kinds of contemporary developments in cryp-
tography are examined. Widening applications of teleprocessing
have given rise to a need for new types of cryptographic systems,
which minimize the need for secure key distribution channels and
supply the equivalent of a written signature. This paper suggests
ways to solve these currently open problems. It also discusses how
the theories of communication and computation are beginning to
provide the tools to solve cryptographic problems of long stand-
ing.

L. INTRODUCTION

E STAND TODAY on the brink of a revolution in

eryptography. The development of cheap digital
hardware has freed it from the design limitations of me-
chanical computing and brought the cost of high grade
cryptographic devices down to where they can be used in
such commercial applications as remote cash dispensers
and computer terminals. In turn, such applications create
a need for new types of cryptographic systems which
minimize the necessity of secure key distribution channels
and supply the equivalent of a written signature. At the
same time, theoretical developments in information theory
and computer science show promise of providing provably
secure cryptosystems, changing this ancient art into a
science.

The best known cryptographic problem is that of pri-
vacy: preventing the unauthorized extraction of informa-
tion from communications over an insecure channel. In
order to use cryptography to insure privacy, however, it is
currently necessary for the communicating parties to share
a key which is known to no one else. This is done by send-
ing the key in advance over some secure channel such as
private courier or registered mail. A private conversation
between two people with no prior acquaintance is a com-
mon occurrence in business, however, and it is unrealistic
1o expect initial business contacts to be posiponed long
enough for keys to be transmitted by some physical means.
The cost and delay imposed by this key distribution
problem is a major barrier to the transfer of business
communications to large teleprocessing networks.

Section 111 proposes two approaches to transmitting
keying information over public (i.e, insecure) channels
without compromising the security of the system. In a
nublic kev crvptosystem enciphering and deciphering are
governed by distinct keys, E and D, such that computing
D from E is computationally infeasible (e.g., requiring
1019 instructions). The enciphering key E can thus be
publicly disclosed without compromising the deciphering
key D. Each user of the network can, therefore, place his
enciphering key in a public directory. This enables any user
of the syvstem to send a message to any other user enci-

NEW DIRECTIONS...

*Key ideas:

®* Some problems exhibit asymmetry — easy to compute, but hard to invert (think factoring)

® Use this asymmetry to enable two parties to agree on a shared secret key using public

discussion(!)

* Key exchange

KEY EXCHANGE

\)\—>

k, = (h,)* =

g’

(G, g, 9) <
G(1")

X «— 7.
q

—_ X

h]—g

PUBLIC-KEY ENCRYPTION

C «— Encpk(m)

“PLAIN" RSA ENCRYPTION

® Choose random, equal-length primes p, g
®* Compute modulus N=pq

® Choose e, d such that e - d = 1 mod @(N)

®* The e™ root of x modulo N is [x® mod N]

(Xd)e — Xde — X[ed mod @Q(N)] — x mod N

® RSA assumption: given N, e only, it is hard to compute the e™ root of a uniform
= ZN*

20

- “PLAIN” RSA ENCRYPTION

(N, e, d) «
- RSAGen(1")
e pk = (N, e)

k=d
/ m=fcdmodN]

SECURITY?

® This scheme is deterministic

® Cannot be CPA-securel

® RSA assumptic Plain RSA should never be used! f uniform c

® ¢ is not uniform unless m is

®* RSA assumption only refers to hardness of computing the e™ root of c in its entirety
® Partial information about the e™ root may be leaked

® (In fact, this is the case)

22

QUANTUM COMPUTERS

\ * GOOGLE Corporation, in conjunction with with the company D-Wave
N\ signed contract about creating quantum computers. D-Wave 2X - is
the newest quantum processor, which contains physical qubits.

* Each additional qubit doubles the data search area, thus is also

significantly increased the calculation speed. Quantum computers will
destroy systems based on the problem of factoring integers (e.g., RSA).

RSA cryptosystem is used in different products on different platforms
RSA system is widely used in opsgatingsysigmsfom Microsoft, Apple, Sun, and Novell. In
hardware performance RSA algorithm is used in secure phones, Ethernet, network cards, smart

cards, and is also widely used in the cryptographic hardware. Along with this, the algorithm is a
part of the underlying protocols protected Internet communications, including S / MIME, SSL and
$ FWAN, and is also used in many organizations, for example, government, banks, most
corporations, public laboratories and universities.

NEWS FROM GOOGLE

®* Google made a huge revelation on October 23, 2019, when it announced that it

had reached something called “quantum supremacy.” Via an article in the journal
Nature, Google said their quantum computer, called Sycamore, solved a
particularly difficult problem in 200 seconds. For comparison, Google said the
world’s current fastest classical computer — one called Summit owned by IBM
that’s as big as two basketball courts — would take 10,000 years to solve that
same problem. This is what “quantum supremacy” means. It’s when a quantum
computer — one that runs on the laws of quantum physics as opposed to the
classical computers we're familiar with (i.e. phones and laptops), which run on
classical physics like Newton’s laws of motion — does something that no

cenventional computer could do in a reasonable amount of time.

IBM'S ANSWER

®IBM responded to Google’s news to say that actually, Summit could solve the

quantum computers’ problem in two and a half days — not 10,000 years as
Google had suggested. In this episode of Recode’s Reset podcast, host Arielle
Duhaime-Ross and Kevin Hartnett, a senior writer for the math and physics
magazine Quanta, break down exactly what quantum computing is and why

Google dunking on IBM both was and wasn’t a huge deal.

<'l|

CHINESE RESEARCHERS ACHIEVE
QUANTUM ADVANTAGE IN TWO
MAINSTREAM ROUTES

® Chinese research teams have made marked progress in superconducting quantum computing
and photonics quantum computing technology, making China the only country to achieve
quantum computational advantage in two mainstream technical routes, while the US has only
achieved a "quantum advantage” in superconducting quantum computing, analysts say.

® "Zuchongzhi 2.1," is 10 million times faster than the current fastest supercomputer and its
calculation complexity is more than 1 million times higher than Google's Sycamore processor.
lt's the first time that China has reached quantum advantage in a superconducting quantum
computing system.

RSA ALTERNATIVES

Hash-based Digital Signature Schemes: The safety of these systems
depends on the security of cryptographic hash functions.

A code-based public-key encryption system: McEliece example.

Lattice-based Cryptography: proofs are based on worst-case hardness.

Multivariate public key cryptosystem — MPKCs: have a set of(usually)
quadratic polynomials over a finite field.

SUCCESSFUL ATTACKS

* To date are already found successful attacks on this crypto
system.

* The Ph.D. candidate of Dublin City University (DCU) Neill
Costigan with the support of Irish Research Council for Science,
Engineering and Technology (IRCSET), together with professor
Michael Scott, Science Foundation Ireland (SFI) member
successfully were able to carry out an attack on the algorithm.

N To do this they needed 8,000 hours of CPU time. In the attack

_representatives of four other countries took part. Scientists
have discovered that the initial length of the key in this
algorithm is insufficient and should be increased.

* This system cannot be also used to encrypt the same message
twice and to encrypt the message when is known it’s relation
with the other message.

* Should be noted the importance of efficiency spectrum. To date experts have

reached quite good results in the speed algorithm processing. According to the
investigation results it becomes clear that the proposed post-quantum
cryptosystems are relatively little effective. Implementation of the algorithms
requires much more time for their processing and verification.

* Inefficient cryptography may be acceptable for the general user, but it cannot be

acceptable for the internet servers that handle thousands of customers in the
second. Today, Google has already has problems with the current cryptography. It is
easy to imagine what will happen when implementing crypto algorithms will take
more time.

* The development and improvement of modern cryptosystems will take years.
Moreover, all the time are recorded successful attacks on them. When is determined

® During the implementation it is necessary to ensure not only correct work of the function and the speed of its
efficiency, but also to prevent any kind of leaks. Recently have been recorded successful ((cache-timing» attacks
on RSA and AES system, as a result of that Intel has added the AES instructions to its processors.

®* McEliece system is vulnerable to attacks, related to side channel attacks. Was shown the successful timing
attack on Patterson algorithm. This attack does not detect the key, but detects an error vector that can
successfully decrypt the message cipher.

®* As we can see, for the creation and implementation of safe and effective post-quantum cryptosystems it is
necessary to fulfill the rather big work. From the foregoing it is clear that today we are not ready
to transfer cryptosystems into post-quantum era. In the near future we cannot be sure in
the reliability of the systems.

RSA ALTERNATIVES — HASH BASED

® Traditional digital signature systems that are used in practice are vulnerable to quantum computers

attacks. The security of these systems is based on the problem of factoring large numbers and
calculating discrete logarithms. Scientists are working on the development of alternatives to RSA, which
are protected from attacks by quantum computer. One of the alternatives are hash based digital
signature schemes. These systems use a cryptographic hash function. The security of these digital

signature systems is based on the collision resistance of the hash functions that they use.

LAMPORT-DIFFIE ONE-TIME SIGNATURE
SCHEME (KEY GENERATION)

®* Keys generation in this system occurs as follows: the signature key X of
this system consists of 2n lines of length n, and is selected randomly.

X=(x_[0], x .[1], ..., x,[0], x [1]) € {O,1} ""

® Verification key Y of this system consists of 2n lines of length n.
*Y=(y .[0],y [1], ..., ¥,[0 ¥ ,[1]) € {0,1} ™"

® This key is calculated as follows:

*v[il = f(x[il), 0<=i<=n-1, {=0,]1

*f — is one-way function:

«f: {0,1} " [1{0,1}";

DOCUMENT SIGNATURE

® To sign a message m of arbitrary size, we transform it into size n using the hash
function:

* h(m)=hash = (hash__, ..., hash)

® Function h- is a cryptographic hash function:
* h:{0,1} "1{0,1} "

® The signature is done as follows:

* sig=(x_,[hash], ..., x [hash]) € {0,1} ™"

® i-th string in this signature is equals to x [0], if i-th bit in hashed message is equal to O.
The string is equal to x [1], if i-th bit in sign is equal fo 1.

® Signature length is n%

DOCUMENT VERIFICATION

To verify the signature sig = (sig_, ..., sig,), is calculated hash of the message hash = (hash__,

... , hash) and the following equality is checked:

(f(sig_)i «..s flsigy)) = (y_,[hash], ..., y,[hash]])

If the equation is true, then the signature is correct.

WINTERNITZ ONE TIME SIGNATURE SCHEME.
KEY GENERATION

To achieve security O(289), the total size of public and private keys must be 160%2%160 bits =
51200 bits, that is 51200/1024=50 times larger than in the case of RSA. We must also note
that the size of the signature in the given scheme is much larger than in the case of RSA.

Winternitz One-time Signature Scheme was proposed to reduce the size of the signature.

MERKLE

®* One-time signature schemes are very inconvenient to use, because to sign each message, you
need to use a different key pair. Merkle crypto-system was proposed to solve this problem. This
system uses a binary tree to replace a large number of verification keys with one public key, the
root of a binary tree. This cryptosystem uses an one-time Lamport or Winternitz signature
scheme and a cryptographic hash function:

* h:{0,1}*1{0,1}"

® Key generation: The length of the tree is chosen H>=2, with one public key it is possible to
sign 2" documents. 2" signature and verification key pairs are generated; X, Y, 0<=i<=2", X.-
is signature key, Y - is verification key. h(Y.) are calculated and are used as the leaves of the

tree. Each tree node is a hash value of concatenation of its children.

SIGNATURE GENERATION

* To sign a message m of arbitrary size we transform it into size n using the hash function

® h (m) = hash, and generate an one-time signature using any one-time key any, the
document's signature will be the concatenation of: one time signature, one-time

verification key dey, index any and all fraternal nodes auth. in relation to any.

*® Signature= (sig| | pub| |any| | anyl Iau’rho,...,au’th_])
® Signature verification:

® To verify the signature we check the one-time signature of sig using any, if it is true, we

calculate all the nodes a [i, j] using “auth,,, index “any™ and any. We compare the last

node, the root of the tree with public key, if they are equal, then the signature is correct.

K-ARY MERKLE TREES

® One possible solution is to use a k-ary Merkle Tree. In a binary Merkle Tree, the

proof consists of one node at each level, so to reduce the size of the proof, we can

reduce the height of the tree by giving it a branching factor of k > 2.

® This approach reduces the height of the tree, but enlarges the proof size. If a

branching factor is k, it reduces the height of the tree from log2n to logkn. log2k is

decrease in height.

®* Merkle proof actually grows larger, from O(log2n) to O(k logk n).

K-ARY MERTKLE TREE

NINYJ

® For general encryption, used when we access secure websites, NIST has selected

the CRYSTALS-Kyber algorithm. Among its advantages are comparatively small encryption keys that
two parties can exchange easily, as well as its speed of operation.

® For digital signatures, often used when we need to verify identities during a digital transaction or to
sign a document remotely, NIST has selected the three
algorithms CRYSTALS-Dilithium, FALCON and SPHINCS+ (read as “Sphincs plus”). Reviewers noted
the high efficiency of the first two, and NIST recommends CRYSTALS-Dilithium as the primary
algorithm, with FALCON for applications that need smaller signatures than Dilithium can provide. The
third, SPHINCS+, is somewhat larger and slower than the other two, but it is valuable as a backup
for one chief reason: It is based on a different math approach than all three of NIST’s other
selections.

https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://falcon-sign.info/
https://sphincs.org/

ATTACK- Al HELPS CRACK NIST-RECOMMENDED
POST-QUANTUM ENCRYPTION ALGORITHM

®* The CRYSTALS-Kyber public-key encryption and key encapsulation mechanism
recommended by NIST in July 2022 for post-quantum cryptography has been

broken. Researchers from the KTH Royal Institute of Technology, Stockholm,

Sweden, used recursive training Al combined with side channel attacks.

IIIIIIIIIIIIIIIIIIIIII

Al Helps Crack NIST-Recommended Post-Quantum
Encryption Algorithm

The CRYSTALS-Kyber pubhc»key encryption and key encapsulation mechanism recommended by NIST for post-quantum cryptography has been
rrr

it
CS, Mobile

SIDE-CHANNEL ATTACKS

* Side-channel attacks exploit information obtained from physically

measurable, non-primary channels such as timing or power consumption of
a device running the implementation.

* The researchers used a technique known as vertical side-channel leakage

detection to analyze the decryption function of the CRYSTALS-Kyber
algorithm. This technique involves analyzing the electrical signals
produced by a computer when performing cryptographic operations. By
analyzing these signals, the researchers identified weaknesses in the
algorithm that could be exploited using a side-channel attack.

MASKING

* To make CRYSTALS-Kyber resistant to side-channel attacks,
a method known as masking wasused.

* Put simply, this approach randomly splits a secret into

several shares, so an attacker must gather all of them to
rebuild the secret. Higher-order masking is when more and
more random values (i.e., masks) are used to protect a
sensitive value. Specifically, an n-order masked
implementation uses n+1 random values to protect each
sensitive value. For example, a fifth-order masked
implementation would use six random values to protect
each sensitive value.

MASKING

* No higher-order implementations of CRYSTALS-Kyber are

publicly available. The existing C codebase is still a
finalist—not production.

* The authors had to modify the current first-order masked C

implementation of CRYSTALS-Kyber to extend it to higher
orders of masking, such as fifth order.

*|n other words, the researchers literally created the

code version they attacked! Yes, the researchers are
trying to spot a future weakness, but this was not an attack
against code that NIST released into the world. That said,
there is merit to the technique, and it will need to be
considered, as all potential threats must be during the
torture-testing phase of a cipher’s development.

CONTRIBUTIONS

* The central idea of the work, performed with power

measurement traces from an ARM Cortex-M4 MCU, involved
a new neural network training technique called recursive
learning (colloquially: copy-paste). This technique
involves copying weights from an existing working model
targeting less masking into a new model targeting more
masking.

*Thus, a first order solution (which was presented in 2021) is

used to bootstrap a second order solution and so forth. This
is a particularly intriguing use of transfer learning.

Jhare 3t 4 hare S Sum b

hare

Gl
An.su.u.JuL‘h.

*
2

Myeae.ad s BT VT
2t Xy :

el sharel shire s shared shared

TN

i

iRt cuuty

PIRE VPN WY

CONTRIBUTIONS

* Another novel contribution is a message recovery method
using cyclic rotations.

*In the procedure that is our attack point, the first bit of

each message byte leak considerably stronger than the last
one. We negacyclically rotate the message to shift its bits
from “less leaky” positions to “more leaky” ones. This
allow us to increase the success rate of message recovery.
The messages are rotated by manipulating the
corresponding ciphertexts.

EFFECTIVENESS

2|

)

o0
»»0000000
0000000

I~
@" I s cne
2900 BN WS

ooD: I
ooD: |
oooﬁ

PRT #-9r2 Ug "

P~ a'.n,u ‘-r,_.”,
”"”""”l”l"lll"l ur)

180
4)
EX
j
 NESEET

PR)
.‘

0000000

I03 =
o’ nmmm s

T &

000000000

(TN
0000000
0000000

66 (A
)
>

olINIo

l..anla g..'
3
|

)
. \l'.l'.'.l\'.ll\l‘.ll‘.l‘!.l\\\'.‘.l‘.l\t‘!l\l -

A

o
o
@

|

i
—
-
-
-
.=
=
J,
-
-—

i
Hegeeiee

3 gy

]

L uymmmgumm Jmmmm

ol T8 £84
am 2a ' e

r} fas S 83"""""""
DEBUG UARTog il iag 3

:]] 0000: .:"’?;5!

-

GLITCH

O"

00 tzi"“' 5

LIOJ P13

g 000000000

» (PP : (] GND PC6 P.7 PD@ PDA PD2 PD3 PD4 PDS
hi hls erer—
C‘..?, ispe M LtL i

MEASURE

To test the attack, they use a Chipwhisperer-lite board, which has
a Cortex M4 CPU, which they downclock to 24Mhz. Power usage is
sampled at 24Mhz, with high 10-bit precision.

https://www.newae.com/products/NAE-CW1173#:~:text=The%20ChipWhisperer%2DLite%20integrates%20hardware,all%20into%20a%20single%20board.

EFFECTIVENESS

*To train the neural networks, 150,000 power traces are

collected for decapsulation of different ciphertexts (with
known shared key) for the same KEM keypair. This is
already a somewhat unusual situation for a real-world
attack: for key agreement KEM keypairs are ephemeral;
generated and used only once. Still, there are certainly
legitimate use cases for long-term KEM keypairs, such as
for authentication, HPKE, and in particular ECH.

* The training is a key step: different devices even from the
same manufacturer can have wildly different power traces
running the same code. Even if two devices are of the same
model, their power traces might still differ significantly.

VECTOR COMMITMENT TREE

® In Merkle Tree, we replace the Hash functions with the corresponding Vector Commitments.
®* To compute a Verkle Tree for the messages, mo,mi,...,mn:
1. The branching factor of the tree is selected, k.

2. We group our messages into subsets of k and calculate a Vector Commitment, VC, over

each of the subsets.

3. We compute each membership proofs p. for every message m. in the subset with respect
to VC.
4. After we continve computing Vector Commitments up the tree over previously computed

commitments until we compute the root commitment of Verkle tree.

VERKLE TREE

The root commitment is digest

COMPLEXITY

O(k log,n)

O(log,n)

ALGORITHMS

® Vector commitments can be described via the following algorithms:

®* VC.KeyGen (1%k ,q) Given the security parameter k and the size q of the committed vector (with g = poly (k
)), the key generation outputs some public parameters pp (which implicitly define the message space M).

®* VC. Compp (mi ,....mq) On input a sequence of g messages mi ,...mq € M and the public parameters pp , the
committing algorithm outputs a commitment string C and an auxiliary information aux .

® VC.Openpp (m,i,aux) This algorithm is run by the committer to produce a proof Aithat m is the i -th committed
message.

®* VC.Verpp (C,m,i,/\i) The verification algorithm accepts (i.e., it outputs 1) onlyif /i is a valid proof that C was
created to a sequence m1 ,...,mq such that m = mi .

PROBLEMS

® Vector commitments based on CDH and RSA can be broken by quantum

computers

® Polynomial commitments based on elliptic curves can be broken by quantum

computers

LATTICE-BASED VECTOR COMMITMENT

% Setup — This algorithm generates the committer parameters cp, and verifier
parameters vp. It involves choosing a random matrix A « ngm, and performing the
TrapGen algorithm to obtain matrices A and T. The algorithm constructs A; matrices
and a random matrix U, where each Uj is in Z'gx{. R; j matrices are derived using

the SamplePre algorithm, ensuring that H; — H; is invertible. The output of the Setup
algorithm is cp = (U,R = (Ri'j)ije[d])’ and vp = (A, U).

®* Commit - Given the committer parameters cp and a message m from the message
space Md, this algorithm computes the commitment ¢ as the sum of element-wise

products of U and m. The state st is set to the message m.

LATTICE-BASED VECTOR COMMITMENT

® Open - This algorithm takes the committer parameters cp, the committer state
st, and an index [, and computes the proof pr; as the element-wise product
of R; j and m;, where R; j is the j - th row of the matrix R; associated with

the [- th entry of the committed message.

® Verify - The verifier algorithm takes the verifier parameters vp, the
commitment ¢, the index [, the message m;, and the proof pr; as input. It
verifies the proof by checking the conditions ||p;|l < ¥, and ¢ = A;p; + U;m;.
Here, y is a security parameter. If the conditions are met, the algorithm

accepts the proof, otherwise it rejects it.

NOVEL SCHEME USING VERKLE TREE

% Instead of the Merkle tree, we use the Verkle tree.

* When generating the key pair, the signer chooses H € N, H > 2. Then the key
pair is generated. Using them, it will be possible to sign/verify 2 documents.

The signer will generate 2/ unique key pairs (X it Y]), 0 <j < 2". Here, X; is
the signature key and Y; is the verification key. Both of them are bit strings.
The leaves of the Verkle tree are g(Yj), 0 <j < 2H. They are computed and

used as the leaves of the tree and each node in the tree is a hash value of of its

children’s concatenation.

®* The public key of the Verkle crypto system is the root commitment. To generate

public key 27 pairs of keys must be computed.

Editor - Canopy o X

& View Search Run Tools \Window Help
Yl bl . I alh s~ pvp [y

verile py cdh.py B3

1 import random

2 k=3

3 p=2048

4g=3
5m=[2,4,6,7,10,12,14,16,18]

6 proofs@= []

7 2=[random. randrange(?, 120) for i in range(2,len(m))]
8 print (‘::”,%f

9 h_i=[g~*i %p for i in 2]

12 print ("h_i=",h_1i)

1 prxnt (1 er(m))

12 #computing (

13VCI"

14 for i in range(9,3):

15 VC1=(VC1» (h 1[1] m{i]))%p
16 VC1_1=VCix(h_il[iJ=*m[i])
17 print ("VC1=",VC1)

18

19 VC2=1
20 for i in range(3,6):
21 VC2= (VCZ h 1[1] «m[1])%p
22 print (" ", VC2)
23
24 VC3=]
25 for 1 in range(6,9):
26 VC3=(VC3+h 1[1] m{il)%p
27 print ("VC3",VC3)
28VC‘[VCI,VC2,VC3]
29 print (VC)

30

31 h_i_pub=[g+*i Xp for i in h_i]
32 print("h_i_pub=" h_i_pub)
33NG_DFOOf:(((((h_i[?]"m['])‘(h_i[l]"m[l])'(h_i_DUbECJ"VC‘))) p)**z[2])%p
34 print ("m@_proof=" mo_proof)
35 ml_proof= (((h ife)**me])*(h_i[2]*+*m[2])«(h_i_pub[2]#+VC1))=»2[1])%p
36 print ("ml_proof=" ml_proof)
37 m2_proof= (((h_i[C]"m[QJ)‘(h_i[']"m['])'(h_i_pUbC7]'<VC1))"Z[ZJ) P
38 print ("m2_proof=",m2_proof)
39 m3_proof=(((h_i[4]#»*m{41)~(h_i[51*+m[51)* (h_i_pub[1]++VC2))*+z[31)%p
40 print ("m3_proof=",m3_proof)
41 md_proof=(((h_i[3]#*m[3])*(h_i[53]#*m[5]1) x(h_i_pub[1]+#VC2))=*z[4])%p
42 print ("md4_proof=",md4_proof)
43m5_proof:(((h_i[s]"m[5])-(h_i[¢]'-m[4])-(h_i_pub[‘]-~VC2)) 2[5 %p
44 print ("m5_proof=",m5_proof)
45 mé6_proof=(((h_i[7] smL7]) *(h_i[8])*+m[8])«(h_i_pub[2]**VC3))=2[6])%p
46 print ("mé_proof=",mé_proof)
47 m7_proof=(((h_i[63+*m[61)+(h_i[81*+m[81)*(h_i_pub[2]++VC3))»2[7])%p
48 print ("m7_proof=",m7_proof)
49 m8_proof=(((h_i[6]#*m[6]) *(h_i[7]**m[7])*(h_i_pub[2]+*VC3))=z[8])%p
50 print ("m8 proof=".m8 oroof)

Python E \documents\defcamp\defcamp2022 v

1217: 281, 2: 2025, 4: 803, 6: 913, 7: 1619, 10: 513, 12: 865, 14: 1766, 16: 1481, 593: 1585, 18: 276, 987: 1995} 1459

In [5]: %run "E:\documents\defcamp\defcamp2@22\verkle.py
‘arning: QT_DEVICE_PIXEL_RATIO is deprecated. Instead use:
QT_AUTO_SCREEN_SCALE_FACTOR to enable platform plugin controlled per-screen factors.
QT_SCREEN_SCALE_FACTORS to set per-screen DPI.
QT_SCALE_FACTOR to set the application global scale factor.
1217: 281, 2: 2025, 4: 803, 6: 913, 7: 1619, 19: 513, 12: 865, 14: 1766, 16: 1481, 593: 1585, 18: 276, 987: 1985} 1459

In [6]:

Cursor pos 1:1 Python 2 v EAdocuments\defcampi\delcamp2022'cdh.¢

B © Type here to search (o] i E S] e - 0 G . B Q ATF Mostlycloudy A & - @ B m @) e I:‘::;Q:;Z B

LAl

QUESTIONS?
MAKSIM IAVICH

SCIENTIFIC CYBER SECURITY ASSOCIATION ; CAUCASUS UNIVERSITY
T. +(995 595) 511355; E-mail: miavich@cu.edu.ge

Scientific&practical cyber security journal — www.journal.scsa.ge

SCIENTIFIC
CYBER SECURITY | '
Where Hacking & Security Collide

ASSOCIATION

Jd340LNNL J6N3IALNGIBN
CAUCASUS UNIVERSITY

