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Who am I?

▪ Passionate about research and 
dissemination

▪ Interests: applied cryptography, 
privacy preserving machine 
learning

▪ Security Researcher at Orange 
Services
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What You Will Know

1. We can

2. How to design and implement privacy preserving 

anomaly detection 
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Anomaly detection in cybersecurity

Login times, number of trials
User behavioral

analytics

Spikes, connection to known malicious domains
Network traffic

analysis

Sudden access to critical server
Intrusion detection

systems

Sensible files modifications, registry changesEndpoint security
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K-Means

▪ Clustering algorithm

▪ Classical machine learning

▪ Requires the knowledge of the number of 
clusters in advance

▪ Compute the distance to the nearest cluster 
and check if it is below a threshold

Autoencoders

▪ Compress and reconstruct data

▪ Neural networks

▪ It does not require any input other than the 
data itself

▪ Compute the reconstruction error and check 
if it is below a threshold

Anomaly Detection
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Philosophies

Homomorphic encryption

(Input Privacy)

◼ Protect the confidentiality of the 

input data 

◼ Perform computations directly over 

encrypted data

◼ Suitable for a any type of 

computation 

Differential Privacy

(Output Privacy) 

◼ Protect the privacy of the individual 

◼ Suitable for machine learning tasks 
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Libraries

Homomorphic encryption

Supports multiple encryption 

schemes e.g. CKKS, BGV, BFV, 

TFHE, etc.

Differential privacy

Yes, TensorFlow does support 

training with differential privacy 
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K-Means
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K-Means
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Fully Homomorphic Encryption

𝐸𝑛𝑐𝑃𝐾 𝑚1 ⊞𝐸𝑛𝑐𝑃𝐾 𝑚2 = 𝐸𝑛𝑐𝑃𝐾(𝑚1 +𝑚2)
𝐸𝑛𝑐𝑃𝐾 𝑚1 ⊙ 𝐸𝑛𝑐𝑃𝐾 𝑚2 = 𝐸𝑛𝑐𝑃𝐾(𝑚1 ⋅ 𝑚2)
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Cheon-Kim-Kim-Song

C K K S
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▪Leveled Homomorphic Encryption

▪Approximate results

▪Real numbers (suitable for ML tasks)

CKKS
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CKKS
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Let’s practice
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Autoencoders
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Autoencoders
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Autoencoders



19

Differential Privacy
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▪Noise addition

▪Privacy budget

▪Trade-off between privacy and utility 

Differential
Privacy
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Differential Privacy

𝐴 satisfies 𝜖 − 𝐷𝑃 if and only if

Pr 𝐴 𝐷 ∈ 𝑇 ≤ 𝑒𝜖 Pr 𝐴 𝐷′ ∈ 𝑇 ∀ 𝑇 ⊆ 𝑟𝑎𝑛𝑔𝑒 𝐴

For any D and D′ that differ on one element
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▪ Goal: detect buffer overflow attacks (KDD99 subset)

▪ Train with differential privacy an autoencoder on normal traffic

▪ Use the reconstruction error to detect anomalies

Automatic Network Intrusion Detection
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Let’s practice
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▪We can provide security and privacy

▪ Implementations with FHE are not simple translations 
(yet)

▪Differential privacy is only a few hyperparameters away 

▪Privacy is a property of both input and output

Summary
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It’s possible!

Security & Privacy



Thank you
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