cybersecurity in the quantum era

radu ionicioiu

 \bigcirc

i. the quantum threat

ii. two solutions

iii. state-of-the-art

digitalisation: the next frontier

digital Europe

government cloud

digitalisation: the next frontier

digital Europe

government cloud

cybersecurity is paramount

crypto: we use it every day

crypto: we use it every day

classical crypto

• symmetric: key A = key B

one-time pad (OTP), AES-256/512

• asymmetric: key $A \neq key B$

public-key, RSA, DH

authentication, digital signatures, privacy, security

the problem

quantum computers will break internet security

- secure communications
- digital signatures
- mobile networks/5G
- financial transactions

mobile banking, POS, e-commerce

- authentication
- critical infrastructure
- secure voting
- software updating cars, computers

 \Rightarrow need to avoid the Q-Day (quantum apocalypse)

how serious is the threat?

quantum computing

a \$65 billion industry by 2030

IBM roadmap

Mode devel

Algor devel

Kerne devel

Quan syste

IBM

Development Roadmap

IBM **Quantum**

	2019	2020	2021	2022	2023	2024	2025	2026+
	Run quantum circuits on the IBM Cloud	Demonstrate and prototype quantum applications	Run quantum applications 100x faster on the IBM Cloud	Dynamic circuits for increased circuit variety, algorithmic sophistication	Frictionless development with quantum workflows built in the cloud	Call 1K+ qubit services from Cloud API and investigate error correction	Enhance quantum workflows through HPC and quantum resources	
					Quantum model services			
ι					Natural Sciences	Finance		
opers		Qiskit application mode	ules		Optimization	Machine Learning		
thm		Natural Sciences	Finance		Prebuilt guantum		Prebuilt quantum +	
opers		Optimization	Machine Learning		runtimes		HPC runtimes	
opers	Circuits		Qiskit Runtime	Dynamic circuits	Circuit libraries		Advanced control systems	
tum ms	Falcon 27 qubits	Hummingbird 65 qubits	Eagle 127 qubits	Osprey 433 qubits	Condor 1121 qubits	Beyond 1K - 1M+ qubits		
Cloud	Circuits		Programs		Models			

Mosca equation

"store now, decrypt later" (SNDL) attack

Migration time

The number of years needed to properly and safely migrate the system to a quantum-safe solution

Shelf-life time

The number of years the information must be protected by the cyber-system

at timeline Danger zone Danger zone t actors will be able to break the tum-vulnerable systems	2020		2025	2030		2035
	eat actors will be able t	to break the			Dange	er zone

... any solutions?

1. the classical way: post-quantum crypto (PQC)

find quantum-resistant, public-key classical algorithms \Rightarrow NIST PQC

the quantum way: quantum key distribution (QKD)
 use the power of quantum + symmetric crypto (AES, OTP)

PKC: status

NOT QUANTUM SAFE

RSA encryption The hard problem: Factoring large integers into prime numbers

Diffie-Hellman kev exchange Solving $g^a \mod p = c$ for a, given g, p and c

Elliptic curve cryptography Finding the relation between two points on an elliptic curve

QUANTUM SAFE

Ø111

Lattice-based crypto Finding the nearest point in a high-dimensional lattice

Code-based crypto Decoding a certain kind 0001

of error-correcting code

Hash-based crypto Inverting a function that maps an input of arbitrary length to a fixed-length sequence

QUANTUM SAFE?

Multivariate crypto

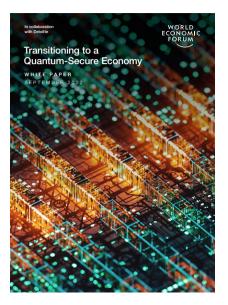
One scheme broken February 2022 Solving systems of nonlinear equations in many variables

Isogenv-based cryptography One scheme broken July 2022 Finding a map that relates two elliptic curves

NIST PQC the finalists

NIST: PQC selection 2017-2022

type	PKE/KEM	signature
lattice	CRYSTALS-Kyber	CRYSTALS-Dilithium FALCON
hash-based		SPHINCS+



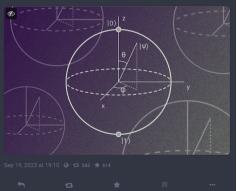
round 4 launched

World Economic Forum White Paper, September 2022

"20 billion digital devices will need to be upgraded or replaced with post-quantum crypto in the next 20 years"

organizations should start planning for the transition now

PQC deployed now


- signal protocol: enhanced by PQC
- protects from future threats of quantum computers
- chrome: Kyber KEM

Signal @signalapp@mastodon.world

Announcing PQXDH! The first step in post-quantum resistance for the Signal Protocol, PQXDH protects your Signal calls & chats from potential future threats of breakthroughs in quantum computing. And it's already rolling out to Signal clients everywhere.

signal.org/blog/pqxdh/

1. use quantum resources to securely distribute keys

2. use keys in symmetric crypto (OTP, AES etc)

quantum solves 2 problems:

- true (quantum) randomness
- secure key distribution eavesdropper detected

the quantum way: QKD

why does it work?

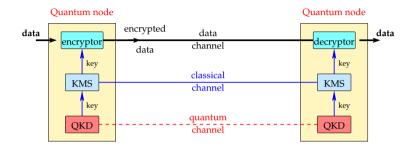
- no-cloning theorem ⇒ Eve cannot clone an unknown quantum state
- measurement changes a quantum state \Rightarrow higher QBER, detectable

Eve will be detected !

QKD

commercial

- providers: IDQ, ThinkQuantum, Toshiba, QTI, KeeQuant, Kets Quantum, QO Jena, LuxQuanta...
- ◆ € 150-300 k/pair



quantum networks

QKD systems: point-to-point \Rightarrow need quantum communication networks

- 1st generation: trusted nodes
 - available now
 - Iow functionality: key distribution
- 2nd generation: quantum repeaters
 - challenging
 - advanced functionality: entanglement distribution, quantum internet, blind QC

trusted quantum node

- QKD: establishes secure keys between neighbouring nodes
- KMS: shares keys between distant nodes
- encryptor: symmetric encryption (AES-256/512, OTP)

what's going on worldwide?

EuroQCI

DECLARATION ON A QUANTUM COMMUNICATION INFRASTRUCTURE FOR THE EU

All 27 EU Member States

have signed a declaration agreeing to work together to explore how to build a quantum communication infrastructure (QCI) across Europe, boosting European capabilities in quantum technologies, cybersecurity and industrial competitiveness.

@FutureTechEU #EuroQCI

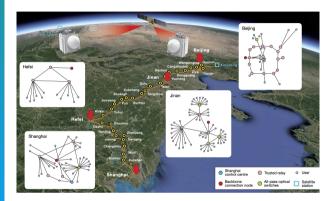
QUANTUM COMMUNICATION INFRASTRUCTURE

Integrate quantum cryptography into critical communication systems

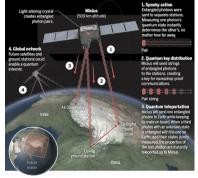
Protection of data networks, clock synchronization, e-voting,... J.

Combine terrestrial and satellite components for wide coverage

Backbone infrastructure for the quantum internet

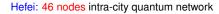

EU + ESA: EuroQCI

SAGA, Eagle1, Eagle2


China

Beijing-Shanghai quantum backbone, 2000 km (~ Bucharest-Brussels)

Quantum leaps


China's Micius satellite, launched in August 2016, has now validated across a record 1200 kilometers the "spooky action" that Albert Einstein abhorred (1). The team is planning other quantum tricks (2–4).

Science 356, 1110 (2017)

Nature 589, 214 (2021)

RoQCI 2021-

goal: develop the Romanian Quantum Communication Infrastructure

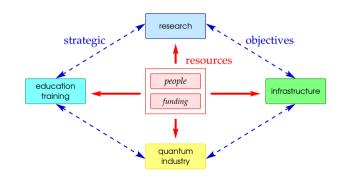
- Phase 1: two intra-city q. networks: Bucharest, Cluj
- Phase 2: National Quantum Backbone (RoQBone): Bucharest–Cluj
- Phase 3: optical ground stations (OGS)
- Phase 4: cross-border links: HU, BG

Phase 1,2: Digital Europe Programme (RoNaQCI)

2021 - 2023

RO national strategy in quantum communications

Q1. research


quantum research hubs

- Q2. education and training quantum specialists
- Q3. infrastructure

intra-city q. networks, national quantum backbone, cross-border links

• Q4. quantum industry

components, applications, services

https://qtstrat.granturi.ubbcluj.ro

transition to quantum-resistant crypto

- create a quantum-readiness roadmap
- inventory of guantum-vulnerable ٠ systems
- start quantum risk assessment processes
- replace HW, SW that use public-key algorithms with quantum-resistant ones

OUANTUM-READINESS: MIGRATION TO POST-OUANTUM CRYPTOGRAPHY

www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms

Q-Day is coming not if, but when

- short term: PQC
- medium term: QKD
- long term: quantum internet

deployed now: signal, chrome, ...

safer, but expensive

full quantum power & functionality

prepare now, be safe later

are you ready?

 \bigcirc

Nature 602, 198 (2022)